Deep Computational Circular RNA Analytics from RNA-seq Data

Part of the Methods in Molecular Biology book series (MIMB, volume 1724)


Circular RNAs (circRNAs) have been first described as “scrambled exons” in the 1990s. CircRNAs originate from back splicing or exon skipping of linear RNA templates and have continuously gained attention in recent years due to the availability of high-throughput whole-transcriptome sequencing methods. Numerous manuscripts describe thousands of circRNAs throughout uni- and multicellular eukaryote species and demonstrated that they are conserved, stable, and abundant in specific tissues or conditions. This manuscript provides a walk-through of our bioinformatics toolbox, which covers all aspects of in silico circRNA analysis, starting from raw sequencing data and back-splicing junction discovery to circRNA quantitation and reconstruction of internal the circRNA structure.

Key words

Bioinformatics Whole-transcriptome sequencing Circular RNA detection Circular RNA analysis 



Both authors acknowledge funding by the Klaus Tschira Foundation gGmbH.


  1. 1.
    Hoffmann S et al (2014) A multi-split mapping algorithm for circular RNA, splicing, trans-splicing and fusion detection. Genome Biol 15(2):R34CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Wang K et al (2010) MapSplice: accurate mapping of RNA-seq reads for splice junction discovery. Nucleic Acids Res 38(18):1–14CrossRefGoogle Scholar
  3. 3.
    Memczak S et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441):333–338CrossRefPubMedGoogle Scholar
  4. 4.
    Chuang TJ, Wu CS, Chen CY, Hung LY, Chiang TW, Yang MY (2015) NCLscan: accurate identification of non-co-linear transcripts (fusion, trans-splicing and circular RNA) with a good balance between sensitivity and precision. Nucleic Acids Res 44(3):e29CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Dodt M, Roehr JT, Ahmed R, Dieterich C (2012) FLEXBAR—flexible barcode and adapter processing for next-generation sequencing platforms. Biology (Basel) 1(3):895–905Google Scholar
  6. 6.
    Westholm JO et al (2014) Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep 9(5):1966–1981CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Zhang XO, Bin Wang H, Zhang Y, Lu X, Chen LL, Yang L (2014) Complementary sequence-mediated exon circularization. Cell 159(1):134–147CrossRefPubMedGoogle Scholar
  8. 8.
    Gao Y, Wang J, Zhao F (2015) CIRI: an efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol 16(1):4CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Cheng J, Metge F, Dieterich C (2016) Specific identification and quantification of circular RNAs from sequencing data. Bioinformatics 32(7):1094–1096CrossRefPubMedGoogle Scholar
  10. 10.
    Szabo L et al (2015) Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development. Genome Biol 16:126CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Dobin A et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21CrossRefPubMedGoogle Scholar
  12. 12.
    Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–360CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Jeck WR, Sharpless NE (2014) Detecting and characterizing circular RNAs. Nat Biotechnol 32(5):453–461CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Metge F, Czaja-Hasse LF, Reinhardt R, Dieterich C (2017) FUCHS—towards full circular RNA characterization using RNAseq. PeerJ 5:e2934CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Li H et al (Aug. 2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    R Core Team (2013) R: a language and environment for statistical computing. Vienna, AustriaGoogle Scholar
  18. 18.
    Andrews S (2012) FastQC. A Qual. Control tool high throughput Seq. data. [http//]Google Scholar
  19. 19.
    Jakobi T, Czaja-Hasse LF, Reinhardt R, Dieterich C (2016) Profiling and validation of the circular RNA repertoire in adult murine hearts. Genomics, Proteomics Bioinforma 14(4):216–223CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  1. 1.Section of Bioinformatics and Systems Cardiology, Department of Internal Medicine III, Klaus Tschira Institute for Integrative Computational CardiologyUniversity Hospital HeidelbergHeidelbergGermany
  2. 2.German Center for Cardiovascular Research (DZHK)—Partner site Heidelberg/MannheimHeidelbergGermany

Personalised recommendations