Skip to main content

Cell Type-Specific Laser Capture Microdissection for Gene Expression Profiling in the Human Brain

  • Protocol
  • First Online:
Laser Capture Microdissection

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1723))

Abstract

Cell type-specific laser microdissection technologies in combination with molecular techniques to determine gene expression profiles have become powerful tools to gain insight into the neurobiological basis of neural circuit disturbances in various neurologic or psychiatric diseases. To identify specific cell populations in human postmortem brain tissue, one can use the inherent properties of the cells, such as pigmentation and morphology or their structural composition through immunohistochemistry (IHC). Here, we describe the isolation of homogeneous neurons and oligodendrocytes and the extraction of high-quality RNA from these cells in human postmortem brain using a combination of rapid IHC, Nissl staining, or simple morphology with Laser Capture Microdissection (LCM), or Laser Microdissection (LMD).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    Protocol originally published in JoVE: Pietersen CY, Lim MP, Woo TUW (2009) [25]. Obtaining High Quality RNA from Single Cell Populations in Human Postmortem Brain Tissue. JoVE. http://www.jove.com/index/details.stp?id=1444, doi: 10.3791/1444.

References

  1. Sonntag KC, Wahlestedt C (2010) RNA mechanisms in CNS systems and disorders. Brain Res 1338:1–2

    Article  CAS  Google Scholar 

  2. Sonntag KC, Woo T-UW (2017) Laser microdissection and gene expression profiling in human postmortem brain. In: Handbook of clinical neurology (Brain banking neurological and psychiatric disorders). Elsevier, Amsterdam

    Google Scholar 

  3. Sonntag KC, Tejada G, Subburaju S, Berretta S, Benes FM, Woo TU (2016) Limited predictability of postmortem human brain tissue quality by RNA integrity numbers. J Neurochem 138:53–59

    Article  CAS  Google Scholar 

  4. McClain KL, Cai YH, Hicks J, Peterson LE, Yan XT, Che S, Ginsberg SD (2005) Expression profiling using human tissues in combination with RNA amplification and microarray analysis: assessment of Langerhans cell histiocytosis. Amino Acids 28:279–290

    Article  CAS  Google Scholar 

  5. Poirion OB, Zhu X, Ching T, Garmire L (2016) Single-cell transcriptomics bioinformatics and computational challenges. Front Genet 7:163

    Article  Google Scholar 

  6. Pietersen CY, Mauney SA, Kim SS, Lim MP, Rooney RJ, Goldstein JM, Petryshen TL, Seidman LJ, Shenton ME, McCarley RW, Sonntag KC, Woo TU (2014) Molecular profiles of pyramidal neurons in the superior temporal cortex in schizophrenia. J Neurogenet 28:53–69

    Article  CAS  Google Scholar 

  7. Pietersen CY, Mauney SA, Kim SS, Passeri E, Lim MP, Rooney RJ, Goldstein JM, Petreyshen TL, Seidman LJ, Shenton ME, McCarley RW, Sonntag KC, Woo TU (2014) Molecular profiles of parvalbumin-immunoreactive neurons in the superior temporal cortex in schizophrenia. J Neurogenet 28:70–85

    Article  CAS  Google Scholar 

  8. Mauney SA, Pietersen CY, Sonntag KC, Woo TU (2015) Differentiation of oligodendrocyte precursors is impaired in the prefrontal cortex in schizophrenia. Schizophr Res 169:374–380

    Article  Google Scholar 

  9. Simunovic F, Yi M, Wang Y, Macey L, Brown LT, Krichevsky AM, Andersen SL, Stephens RM, Benes FM, Sonntag KC (2009) Gene expression profiling of substantia nigra dopamine neurons: further insights into Parkinson’s disease pathology. Brain 132:1795–1809

    Article  Google Scholar 

  10. Simunovic F, Yi M, Wang Y, Stephens R, Sonntag KC (2010) Evidence for gender-specific transcriptional profiles of nigral dopamine neurons in Parkinson disease. PLoS One 5:e8856

    Article  Google Scholar 

  11. Charboneau L, Paweletz CP, Liotta LA (2001) Laser capture microdissection. Curr Protoc Cell Biol Chapter 2:Unit 2.5

    Google Scholar 

  12. Edwards RA (2007) Laser capture microdissection of mammalian tissue. J Vis Exp 8:309

    Google Scholar 

  13. Benes FM, Lim B, Matzilevich D, Walsh JP, Subburaju S, Minns M (2007) Regulation of the GABA cell phenotype in hippocampus of schizophrenics and bipolars. Proc Natl Acad Sci U S A 104:10164–10169

    Article  CAS  Google Scholar 

  14. Briggs CE, Wang Y, Kong B, Woo TU, Iyer LK, Sonntag KC (2015) Midbrain dopamine neurons in Parkinson’s disease exhibit a dysregulated miRNA and target-gene network. Brain Res 1618:111–121

    Article  CAS  Google Scholar 

  15. Kim W, Lee Y, McKenna ND, Yi M, Simunovic F, Wang Y, Kong B, Rooney RJ, Seo H, Stephens RM, Sonntag KC (2014) miR-126 contributes to Parkinson’s disease by dysregulating the insulin-like growth factor/phosphoinositide 3-kinase signaling. Neurobiol Aging 35:1712–1721

    Article  CAS  Google Scholar 

  16. Absalon S, Kochanek DM, Raghavan V, Krichevsky AM (2013) MiR-26b, upregulated in Alzheimer’s disease, activates cell cycle entry, tau-phosphorylation, and apoptosis in postmitotic neurons. J Neurosci 33:14645–14659

    Article  CAS  Google Scholar 

  17. Elkahloun AG, Hafko R, Saavedra JM (2016) An integrative genome-wide transcriptome reveals that candesartan is neuroprotective and a candidate therapeutic for Alzheimer’s disease. Alzheimers Res Ther 8:5

    Article  CAS  Google Scholar 

  18. Ginsberg SD, Alldred MJ, Che S (2012) Gene expression levels assessed by CA1 pyramidal neuron and regional hippocampal dissections in Alzheimer’s disease. Neurobiol Dis 45:99–107

    Article  CAS  Google Scholar 

  19. Highley JR, Kirby J, Jansweijer JA, Webb PS, Hewamadduma CA, Heath PR, Higginbottom A, Raman R, Ferraiuolo L, Cooper-Knock J, McDermott CJ, Wharton SB, Shaw PJ, Ince PG (2014) Loss of nuclear TDP-43 in amyotrophic lateral sclerosis (ALS) causes altered expression of splicing machinery and widespread dysregulation of RNA splicing in motor neurones. Neuropathol Appl Neurobiol 40:670–685

    Article  CAS  Google Scholar 

  20. Kerman IA, Bernard R, Bunney WE, Jones EG, Schatzberg AF, Myers RM, Barchas JD, Akil H, Watson SJ, Thompson RC (2012) Evidence for transcriptional factor dysregulation in the dorsal raphe nucleus of patients with major depressive disorder. Front Neurosci 6:135

    Article  CAS  Google Scholar 

  21. Mycko MP, Brosnan CF, Raine CS, Fendler W, Selmaj KW (2012) Transcriptional profiling of microdissected areas of active multiple sclerosis lesions reveals activation of heat shock protein genes. J Neurosci Res 90:1941–1948

    Article  CAS  Google Scholar 

  22. Kohen R, Dobra A, Tracy JH, Haugen E (2014) Transcriptome profiling of human hippocampus dentate gyrus granule cells in mental illness. Transl Psychiatry 4:e366

    Article  CAS  Google Scholar 

  23. Harris LW, Wayland M, Lan M, Ryan M, Giger T, Lockstone H, Wuethrich I, Mimmack M, Wang L, Kotter M, Craddock R, Bahn S (2008) The cerebral microvasculature in schizophrenia: a laser capture microdissection study. PLoS One 3(12):e3964

    Article  Google Scholar 

  24. Torres-Munoz JE, Van Waveren C, Keegan MG, Bookman RJ, Petito CK (2004) Gene expression profiles in microdissected neurons from human hippocampal subregions. Brain Res Mol Brain Res 127:105–114

    Article  CAS  Google Scholar 

  25. Pietersen CY, Lim MP, Woo TU (2009) Obtaining high quality RNA from single cell populations in human postmortem brain tissue. J Vis Exp (30)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH grants MH080272 and MH076060 (Woo) and R21NS067335 (Sonntag).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tsung-Ung W. Woo or Kai C. Sonntag .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mauney, S.A., Woo, TU.W., Sonntag, K.C. (2018). Cell Type-Specific Laser Capture Microdissection for Gene Expression Profiling in the Human Brain. In: Murray, G. (eds) Laser Capture Microdissection. Methods in Molecular Biology, vol 1723. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7558-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7558-7_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7557-0

  • Online ISBN: 978-1-4939-7558-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics