Skip to main content

Immunophenotyping of Live Human Pluripotent Stem Cells by Flow Cytometry

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1722))

Abstract

Human pluripotent stem cells (hPSCs) have great potential for use in regenerative medicine and cell replacement therapies; however, prior to clinical application, cultured cell populations need to be screened to ensure the quality of the culture, as well as the capacity of these pluripotent cells to differentiate into desired cell types. Flow cytometry, utilizing antibodies recognizing targets restricted to the hPSC surfaceome, offers an invaluable tool for high-throughput validation of hPSC lines. Here we describe the immunophenotyping of live human embryonic stem cell (hESC, H9) and human induced pluripotent stem cell (hiPSC, KB3) lines by flow cytometry using a panel of antibodies identified as either stem cell reference markers (CD90, EpCam) or reported as being prevalent or restricted (c-Kit, HPI-1, Integrin α6, Semaphorin-6A) to these cells. The protocols described here with hPSCs are also applicable to differentiated hPSC progeny and should be instrumental in the immunophenotyping and isolation of well-defined homogeneous cell populations useful in regenerative medicine.

This is a preview of subscription content, log in via an institution.

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  CAS  PubMed  Google Scholar 

  2. Tachibana M, Amato P, Sparman M, Gutierrez NM, Tippner-Hedges R, Ma H, Kang E, Fulati A, Lee HS, Sritanaudomchai H et al (2013) Human embryonic stem cells derived by somatic cell nuclear transfer. Cell 153:1228–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  CAS  PubMed  Google Scholar 

  4. Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, Lerou PH, Lensch MW, Daley GQ (2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451:141–146

    Article  CAS  PubMed  Google Scholar 

  5. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  CAS  PubMed  Google Scholar 

  6. Narsinh KH, Plews J, Wu JC (2011) Comparison of human induced pluripotent and embryonic stem cells: fraternal or identical twins? Mol Ther 19:635–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ghosh Z, Wilson KD, Wu Y, Hu S, Quertermous T, Wu JC (2010) Persistent donor cell gene expression among human induced pluripotent stem cells contributes to differences with human embryonic stem cells. PLoS One 5:e8975

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chin MH, Mason MJ, Xie W, Volinia S, Singer M, Peterson C, Ambartsumyan G, Aimiuwu O, Richter L, Zhang J et al (2009) Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell 5:111–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Narsinh KH, Sun N, Sanchez-Freire V, Lee AS, Almeida P, Hu S, Jan T, Wilson KD, Leong D, Rosenberg J et al (2011) Single cell transcriptional profiling reveals heterogeneity of human induced pluripotent stem cells. J Clin Invest 121:1217–1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tang C, Lee AS, Volkmer JP, Sahoo D, Nag D, Mosley AR, Inlay MA, Ardehali R, Chavez SL, Pera RR et al (2011) An antibody against SSEA-5 glycan on human pluripotent stem cells enables removal of teratoma-forming cells. Nat Biotechnol 29:829–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Boheler KR, Bhattacharya S, Kropp EM, Chuppa S, Riordon DR, Bausch-Fluck D, Burridge PW, Wu JC, Wersto RP, Chan GC et al (2014) A human pluripotent stem cell surface N-glycoproteome resource reveals markers, extracellular epitopes, and drug targets. Stem Cell Rep 3:185–203

    Article  CAS  Google Scholar 

  12. Koivuniemi R, Makela J, Hokkanen ME, Bruelle C, Ho TH, Ola R, Korhonen L, Schroder J, Kataoka H, Lindholm D (2013) Hepatocyte growth factor activator inhibitor-1 is induced by bone morphogenetic proteins and regulates proliferation and cell fate of neural progenitor cells. PLoS One 8:e56117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. van Galen P, Kreso A, Mbong N, Kent DG, Fitzmaurice T, Chambers JE, Xie S, Laurenti E, Hermans K, Eppert K et al (2014) The unfolded protein response governs integrity of the haematopoietic stem-cell pool during stress. Nature 510:268–272

    Article  PubMed  Google Scholar 

  14. Yu KR, Yang SR, Jung JW, Kim H, Ko K, Han DW, Park SB, Choi SW, Kang SK, Scholer H et al (2012) CD49f enhances multipotency and maintains stemness through the direct regulation of OCT4 and SOX2. Stem Cells 30:876–887

    Article  CAS  PubMed  Google Scholar 

  15. Chen G, Gulbranson DR, Hou Z, Bolin JM, Ruotti V, Probasco MD, Smuga-Otto K, Howden SE, Diol NR, Propson NE et al (2011) Chemically defined conditions for human iPSC derivation and culture. Nat Methods 8:424–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Beers J, Gulbranson DR, George N, Siniscalchi LI, Jones J, Thomson JA, Chen G (2012) Passaging and colony expansion of human pluripotent stem cells by enzyme-free dissociation in chemically defined culture conditions. Nat Protoc 7:2029–2040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by the Intramural Research Program of the NIH, National Institute on Aging, by the Research Grants Council of Hong Kong Theme-based Research Scheme T13-706/11, and the Hong Kong Research Grant Committee General Research Fund (Project number 17100214). We thank Robert Wersto and the NIA FC Core Facility for assistance with flow cytometry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel R. Riordon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Riordon, D.R., Boheler, K.R. (2018). Immunophenotyping of Live Human Pluripotent Stem Cells by Flow Cytometry. In: Boheler, K., Gundry, R. (eds) The Surfaceome. Methods in Molecular Biology, vol 1722. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7553-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7553-2_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7551-8

  • Online ISBN: 978-1-4939-7553-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics