The Surfaceome pp 167-184 | Cite as

NaV Channels: Assaying Biosynthesis, Trafficking, Function

  • Gordon F. TomaselliEmail author
  • Federica Farinelli
Part of the Methods in Molecular Biology book series (MIMB, volume 1722)


Integral to the cell surface is channels, pumps, and exchanger proteins that facilitate the movement of ions across the membrane. Ion channels facilitate the passive movement of ions down an electrochemical gradient. Ion pumps actively use energy to actively translocate ions, often against concentration or voltage gradients, while ion exchangers utilize energy to couple the transport of different ion species such that one ion moves down its gradient and the released free energy is used to drive the movement of a different ion against its electrochemical gradient. Some ion pumps and exchangers may be electrogenic, i.e., the ion transport they support is not electrically neutral and generates a current. Functions of these pore-forming membrane proteins include the establishment of membrane potentials, gating of ions flows across the cell membrane to elicit action potentials and other electrical signals, as well as the regulation of cell volumes. The major forms of ion channels include voltage-, ligand-, and signal-gated channels. In this review, we describe mammalian voltage dependent Na (NaV) channels.

Key words

Ion channel Electrophysiology Stem cells Optical recording Seizure Arrhythmia 


  1. 1.
    Makielski JC, Sheets MF, Hanck DA, January CT, Fozzard HA (1987) Sodium current in voltage clamped internally perfused canine cardiac Purkinje cells. Biophys J 52:1–11CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Noda M, Shimizu S, Tanabe T, Takai T, Kayano T, Ikeda T, Takahashi H, Nakayama H et al (1984) Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 312:121–127CrossRefPubMedGoogle Scholar
  3. 3.
    Dib-Hajj SD, Tyrrell L, Black JA, Waxman SG (1998) NaN, a novel voltage-gated Na channel, is expressed preferentially in peripheral sensory neurons and down-regulated after axotomy. Proc Natl Acad Sci U S A 95:8963–8968CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Akopian AN, Sivilotti L, Wood JN (1996) A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons. Nature 379:257–262CrossRefPubMedGoogle Scholar
  5. 5.
    George AL Jr, Komisarof J, Kallen RG, Barchi RL (1992) Primary structure of the adult human skeletal muscle voltage-dependent sodium channel. Ann Neurol 31:131–137CrossRefPubMedGoogle Scholar
  6. 6.
    Gellens ME, George AL Jr, Chen LQ, Chahine M, Horn R, Barchi RL, Kallen RG (1992) Primary structure and functional expression of the human cardiac tetrodotoxin-insensitive voltage-dependent sodium channel. Proc Natl Acad Sci U S A 89:554–558CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ahmed CM, Ware DH, Lee SC, Patten CD, Ferrer-Montiel AV, Schinder AF, McPherson JD, Wagner-McPherson CB et al (1992) Primary structure, chromosomal localization, and functional expression of a voltage-gated sodium channel from human brain. Proc Natl Acad Sci U S A 89:8220–8224CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Yellen G, Jurman ME, Abramson T, MacKinnon R (1991) Mutations affecting internal TEA blockade identify the probable pore-forming region of a K+ channel. Science 251:939–942CrossRefPubMedGoogle Scholar
  9. 9.
    Payandeh J, Scheuer T, Zheng N, Catterall WA (2011) The crystal structure of a voltage-gated sodium channel. Nature 475:353–358CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    McCusker EC, Bagneris C, Naylor CE, Cole AR, D'Avanzo N, Nichols CG, Wallace BA (2012) Structure of a bacterial voltage-gated sodium channel pore reveals mechanisms of opening and closing. Nat Commun 3:1102CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Zhang X, Ren W, DeCaen P, Yan C, Tao X, Tang L, Wang J, Hasegawa K et al (2012) Crystal structure of an orthologue of the NaChBac voltage-gated sodium channel. Nature 486:130–134CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Stuhmer W, Conti F, Suzuki H, Wang XD, Noda M, Yahagi N, Kubo H, Numa S (1989) Structural parts involved in activation and inactivation of the sodium channel. Nature 339:597–603CrossRefPubMedGoogle Scholar
  13. 13.
    West JW, Patton DE, Scheuer T, Wang Y, Goldin AL, Catterall WA (1992) A cluster of hydrophobic amino acid residues required for fast Na(+)-channel inactivation. Proc Natl Acad Sci U S A 89:10910–10914CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Patton DE, West JW, Catterall WA, Goldin AL (1992) Amino acid residues required for fast Na(+)-channel inactivation: charge neutralizations and deletions in the III–IV linker. Proc Natl Acad Sci U S A 89:10905–10909CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    O'Malley HA, Isom LL (2015) Sodium channel beta subunits: emerging targets in channelopathies. Annu Rev Physiol 77:481–504CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Meadows L, Malhotra JD, Stetzer A, Isom LL, Ragsdale DS (2001) The intracellular segment of the sodium channel beta 1 subunit is required for its efficient association with the channel alpha subunit. J Neurochem 76:1871–1878CrossRefPubMedGoogle Scholar
  17. 17.
    McCormick KA, Isom LL, Ragsdale D, Smith D, Scheuer T, Catterall WA (1998) Molecular determinants of Na+ channel function in the extracellular domain of the beta1 subunit. J Biol Chem 273:3954–3962CrossRefPubMedGoogle Scholar
  18. 18.
    Gilchrist J, Das S, Van Petegem F, Bosmans F (2013) Crystallographic insights into sodium-channel modulation by the beta4 subunit. Proc Natl Acad Sci U S A 110:E5016–E5024CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Yu FH, Westenbroek RE, Silos-Santiago I, McCormick KA, Lawson D, Ge P, Ferriera H, Lilly J, DiStefano PS et al (2003) Sodium channel beta4, a new disulfide-linked auxiliary subunit with similarity to beta2. J Neurosci 23:7577–7585PubMedGoogle Scholar
  20. 20.
    Chen C, Calhoun JD, Zhang Y, Lopez-Santiago L, Zhou N, Davis TH, Salzer JL, Isom LL (2012) Identification of the cysteine residue responsible for disulfide linkage of Na+ channel alpha and beta2 subunits. J Biol Chem 287:39061–39069CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Isom LL, Catterall WA (1996) Na+ channel subunits and Ig domains. Nature 383:307–308CrossRefPubMedGoogle Scholar
  22. 22.
    Calhoun JD, Isom LL (2014) The role of non-pore-forming beta subunits in physiology and pathophysiology of voltage-gated sodium channels. Handb Exp Pharmacol 221:51–89CrossRefPubMedGoogle Scholar
  23. 23.
    Bezanilla F (2008) How membrane proteins sense voltage. Nat Rev Mol Cell Biol 9:323–332CrossRefPubMedGoogle Scholar
  24. 24.
    Yang N, George AL Jr, Horn R (1996) Molecular basis of charge movement in voltage-gated sodium channels. Neuron 16:113–122CrossRefPubMedGoogle Scholar
  25. 25.
    Zhao Y, Scheuer T, Catterall WA (2004) Reversed voltage-dependent gating of a bacterial sodium channel with proline substitutions in the S6 transmembrane segment. Proc Natl Acad Sci U S A 101:17873–17878CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Yang Y, Estacion M, Dib-Hajj SD, Waxman SG (2013) Molecular architecture of a sodium channel S6 helix: radial tuning of the voltage-gated sodium channel 1.7 activation gate. J Biol Chem 288:13741–13747CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Shaya D, Findeisen F, Abderemane-Ali F, Arrigoni C, Wong S, Nurva SR, Loussouarn G, Minor DL Jr (2014) Structure of a prokaryotic sodium channel pore reveals essential gating elements and an outer ion binding site common to eukaryotic channels. J Mol Biol 426:467–483CrossRefPubMedGoogle Scholar
  28. 28.
    Chen LQ, Santarelli V, Horn R, Kallen RG (1996) A unique role for the S4 segment of domain 4 in the inactivation of sodium channels. J Gen Physiol 108:549–556CrossRefPubMedGoogle Scholar
  29. 29.
    Patton DE, West JW, Catterall WA, Goldin AL (1993) A peptide segment critical for sodium channel inactivation functions as an inactivation gate in a potassium channel. Neuron 11:967–974CrossRefPubMedGoogle Scholar
  30. 30.
    McPhee JC, Ragsdale DS, Scheuer T, Catterall WA (1998) A critical role for the S4-S5 intracellular loop in domain IV of the sodium channel alpha-subunit in fast inactivation. J Biol Chem 273:1121–1129CrossRefPubMedGoogle Scholar
  31. 31.
    Chandler WK, Meves H (1970) Sodium and potassium currents in squid axons perfused with fluoride solutions. J Physiol 211:623–652CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Silva J (2014) Slow inactivation of Na(+) channels. Handb Exp Pharmacol 221:33–49CrossRefPubMedGoogle Scholar
  33. 33.
    Zhou J, Shin HG, Yi J, Shen W, Williams CP, Murray KT (2002) Phosphorylation and putative ER retention signals are required for protein kinase A-mediated potentiation of cardiac sodium current. Circ Res 91:540–546CrossRefPubMedGoogle Scholar
  34. 34.
    Smith RD, Goldin AL (1997) Phosphorylation at a single site in the rat brain sodium channel is necessary and sufficient for current reduction by protein kinase A. J Neurosci 17:6086–6093PubMedGoogle Scholar
  35. 35.
    Li M, West JW, Numann R, Murphy BJ, Scheuer T, Catterall WA (1993) Convergent regulation of sodium channels by protein kinase C and cAMP-dependent protein kinase. Science 261:1439–1442CrossRefPubMedGoogle Scholar
  36. 36.
    Hallaq H, Yang Z, Viswanathan PC, Fukuda K, Shen W, Wang DW, Wells KS, Zhou J, Yi J, Murray KT (2006) Quantitation of protein kinase A-mediated trafficking of cardiac sodium channels in living cells. Cardiovasc Res 72:250–261CrossRefPubMedGoogle Scholar
  37. 37.
    Frohnwieser B, Chen LQ, Schreibmayer W, Kallen RG (1997) Modulation of the human cardiac sodium channel alpha-subunit by cAMP-dependent protein kinase and the responsible sequence domain. J Physiol 498(Pt 2):309–318CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Hallaq H, Wang DW, Kunic JD, George AL Jr, Wells KS, Murray KT (2012) Activation of protein kinase C alters the intracellular distribution and mobility of cardiac Na+ channels. Am J Physiol Heart Circ Physiol 302:H782–H789CrossRefPubMedGoogle Scholar
  39. 39.
    Frohnwieser B, Weigl L, Schreibmayer W (1995) Modulation of cardiac sodium channel isoform by cyclic AMP dependent protein kinase does not depend on phosphorylation of serine 1504 in the cytosolic loop interconnecting transmembrane domains III and IV. Pflugers Arch 430:751–753CrossRefPubMedGoogle Scholar
  40. 40.
    Cantrell AR, Ma JY, Scheuer T, Catterall WA (1996) Muscarinic modulation of sodium current by activation of protein kinase C in rat hippocampal neurons. Neuron 16:1019–1026CrossRefPubMedGoogle Scholar
  41. 41.
    Hammarstrom AK, Gage PW (1998) Inhibition of oxidative metabolism increases persistent sodium current in rat CA1 hippocampal neurons. J Physiol 510(Pt 3):735–741CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Ju YK, Saint DA, Gage PW (1996) Hypoxia increases persistent sodium current in rat ventricular myocytes. J Physiol 497(Pt 2):337–347CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Saint DA (2006) The role of the persistent Na(+) current during cardiac ischemia and hypoxia. J Cardiovasc Electrophysiol 17(Suppl 1):S96–S103CrossRefPubMedGoogle Scholar
  44. 44.
    Wagner S, Ruff HM, Weber SL, Bellmann S, Sowa T, Schulte T, Anderson ME, Grandi E et al (2011) Reactive oxygen species-activated Ca/calmodulin kinase IIdelta is required for late I(Na) augmentation leading to cellular Na and Ca overload. Circ Res 108:555–565CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Wagner S, Dybkova N, Rasenack EC, Jacobshagen C, Fabritz L, Kirchhof P, Maier SK, Zhang T et al (2006) Ca2+/calmodulin-dependent protein kinase II regulates cardiac Na+ channels. J Clin Invest 116:3127–3138CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Ma J, Luo A, Wu L, Wan W, Zhang P, Ren Z, Zhang S, Qian C, Shryock JC, Belardinelli L (2012) Calmodulin kinase II and protein kinase C mediate the effect of increased intracellular calcium to augment late sodium current in rabbit ventricular myocytes. Am J Physiol Cell Physiol 302:C1141–C1151CrossRefPubMedGoogle Scholar
  47. 47.
    Koval OM, Snyder JS, Wolf RM, Pavlovicz RE, Glynn P, Curran J, Leymaster ND, Dun W et al (2012) Ca2+/calmodulin-dependent protein kinase II-based regulation of voltage-gated Na+ channel in cardiac disease. Circulation 126:2084–2094CrossRefPubMedGoogle Scholar
  48. 48.
    Herren AW, Weber DM, Rigor RR, Margulies KB, Phinney BS, Bers DM (2015) CaMKII phosphorylation of NaV1.5: novel in vitro sites identified by mass spectrometry and reduced S516 phosphorylation in human heart failure. J Proteome Res 14:2298–2311CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Aiba T, Hesketh GG, Liu T, Carlisle R, Villa-Abrille MC, O'Rourke B, Akar FG, Tomaselli GF (2010) Na+ channel regulation by Ca2+/calmodulin and Ca2+/calmodulin-dependent protein kinase II in guinea-pig ventricular myocytes. Cardiovasc Res 85:454–463CrossRefPubMedGoogle Scholar
  50. 50.
    Aiba T, Barth AS, Hesketh GG, Hashambhoy YL, Chakir K, Tunin RS, Greenstein JL, Winslow RL et al (2013) Cardiac resynchronization therapy improves altered Na channel gating in canine model of dyssynchronous heart failure. Circ Arrhythm Electrophysiol 6:546–554CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Ptacek LJ, George AL Jr, Griggs RC, Tawil R, Kallen RG, Barchi RL, Robertson M, Leppert MF (1991) Identification of a mutation in the gene causing hyperkalemic periodic paralysis. Cell 67:1021–1027CrossRefPubMedGoogle Scholar
  52. 52.
    Kumar D, Ambasta RK, Kumar P (2014) Mutational consequences of aberrant ion channels in neurological disorders. J Membr Biol 247:1083–1127CrossRefPubMedGoogle Scholar
  53. 53.
    Waxman SG, Merkies IS, Gerrits MM, Dib-Hajj SD, Lauria G, Cox JJ, Wood JN, Woods CG et al (2014) Sodium channel genes in pain-related disorders: phenotype-genotype associations and recommendations for clinical use. Lancet Neurol 13:1152–1160CrossRefPubMedGoogle Scholar
  54. 54.
    Suetterlin K, Mannikko R, Hanna MG (2014) Muscle channelopathies: recent advances in genetics, pathophysiology and therapy. Curr Opin Neurol 27:583–590CrossRefPubMedGoogle Scholar
  55. 55.
    Veerman CC, Wilde AA, Lodder EM (2015) The cardiac sodium channel gene SCN5A and its gene product NaV1.5: role in physiology and pathophysiology. Gene 573:177–187CrossRefPubMedGoogle Scholar
  56. 56.
    Tan BH, Iturralde-Torres P, Medeiros-Domingo A, Nava S, Tester DJ, Valdivia CR, Tusie-Luna T, Ackerman MJ, Makielski JC (2007) A novel C-terminal truncation SCN5A mutation from a patient with sick sinus syndrome, conduction disorder and ventricular tachycardia. Cardiovasc Res 76:409–417CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Medeiros-Domingo A, Kaku T, Tester DJ, Iturralde-Torres P, Itty A, Ye B, Valdivia C, Ueda K et al (2007) SCN4B-encoded sodium channel beta4 subunit in congenital long-QT syndrome. Circulation 116:134–142CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Grant AO, Carboni MP, Neplioueva V, Starmer CF, Memmi M, Napolitano C, Priori S (2002) Long QT syndrome, Brugada syndrome, and conduction system disease are linked to a single sodium channel mutation. J Clin Invest 110:1201–1209CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Lupoglazoff JM, Cheav T, Baroudi G, Berthet M, Denjoy I, Cauchemez B, Extramiana F, Chahine M, Guicheney P (2001) Homozygous SCN5A mutation in long-QT syndrome with functional two-to-one atrioventricular block. Circ Res 89:E16–E21CrossRefPubMedGoogle Scholar
  60. 60.
    Kyndt F, Probst V, Potet F, Demolombe S, Chevallier JC, Baro I, Moisan JP, Boisseau P et al (2001) Novel SCN5A mutation leading either to isolated cardiac conduction defect or Brugada syndrome in a large French family. Circulation 104:3081–3086CrossRefPubMedGoogle Scholar
  61. 61.
    Bezzina C, Veldkamp MW, van Den Berg MP, Postma AV, Rook MB, Viersma JW, van Langen IM, Tan-Sindhunata G et al (1999) A single Na(+) channel mutation causing both long-QT and Brugada syndromes. Circ Res 85:1206–1213CrossRefPubMedGoogle Scholar
  62. 62.
    Waxman SG (2006) Axonal conduction and injury in multiple sclerosis: the role of sodium channels. Nat Rev Neurosci 7:932–941CrossRefPubMedGoogle Scholar
  63. 63.
    Long C, McAnally JR, Shelton JM, Mireault AA, Bassel-Duby R, Olson EN (2014) Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science 345:1184–1188CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Long C, Amoasii L, Mireault AA, McAnally JR, Li H, Sanchez-Ortiz E, Bhattacharyya S, Shelton JM et al (2016) Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 351:400–403CrossRefPubMedGoogle Scholar
  65. 65.
    Angelides KJ, Elmer LW, Loftus D, Elson E (1988) Distribution and lateral mobility of voltage-dependent sodium channels in neurons. J Cell Biol 106:1911–1925CrossRefPubMedGoogle Scholar
  66. 66.
    Garrido JJ, Giraud P, Carlier E, Fernandes F, Moussif A, Fache MP, Debanne D, Dargent B (2003) A targeting motif involved in sodium channel clustering at the axonal initial segment. Science 300:2091–2094CrossRefPubMedGoogle Scholar
  67. 67.
    Bennett V, Baines AJ (2001) Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. Physiol Rev 81:1353–1392PubMedGoogle Scholar
  68. 68.
    Aiba T, Farinelli F, Kostecki G, Hesketh GG, Edwards D, Biswas S, Tung L, Tomaselli GF (2014) A mutation causing brugada syndrome identifies a mechanism for altered autonomic and oxidant regulation of cardiac sodium currents. Circ Cardiovasc Genet 7:249–256CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Makara MA, Curran J, Little SC, Musa H, Polina I, Smith SA, Wright PJ, Unudurthi SD et al (2014) Ankyrin-G coordinates intercalated disc signaling platform to regulate cardiac excitability in vivo. Circ Res 115:929–938CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Shy D, Gillet L, Ogrodnik J, Albesa M, Verkerk AO, Wolswinkel R, Rougier JS, Barc J et al (2014) PDZ domain-binding motif regulates cardiomyocyte compartment-specific NaV1.5 channel expression and function. Circulation 130:147–160CrossRefPubMedGoogle Scholar
  71. 71.
    Agullo-Pascual E, Reid DA, Keegan S, Sidhu M, Fenyo D, Rothenberg E, Delmar M (2013) Super-resolution fluorescence microscopy of the cardiac connexome reveals plakophilin-2 inside the connexin43 plaque. Cardiovasc Res 100:231–240CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Agullo-Pascual E, Lin X, Leo-Macias A, Zhang M, Liang FX, Li Z, Pfenniger A, Lubkemeier I et al (2014) Super-resolution imaging reveals that loss of the C-terminus of connexin43 limits microtubule plus-end capture and NaV1.5 localization at the intercalated disc. Cardiovasc Res 104:371–381CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Hodgkin AL, Katz B (1949) The effect of sodium ions on the electrical activity of giant axon of the squid. J Physiol 108:37–77CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Marmont G (1949) Studies on the axon membrane; a new method. J Cell Physiol 34:351–382CrossRefGoogle Scholar
  75. 75.
    Hodgkin AL, Huxley AF, Katz B (1949) Ionic currents underlying activity in the giant axon of the squid. Arch Sci Physiol 3:129–150Google Scholar
  76. 76.
    Cole KS (1949) Dynamic electrical characteristics of the squid axon membrane. Arch Sci Physiol 3:253–258Google Scholar
  77. 77.
    Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85–100CrossRefPubMedGoogle Scholar
  78. 78.
    Dykxhoorn DM, Lieberman J (2005) The silent revolution: RNA interference as basic biology, research tool, and therapeutic. Annu Rev Med 56:401–423CrossRefPubMedGoogle Scholar
  79. 79.
    Deschenes I, Armoundas AA, Jones SP, Tomaselli GF (2008) Post-transcriptional gene silencing of KChIP2 and Navbeta1 in neonatal rat cardiac myocytes reveals a functional association between Na and Ito currents. J Mol Cell Cardiol 45:336–346CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676CrossRefPubMedGoogle Scholar
  81. 81.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872CrossRefPubMedGoogle Scholar
  82. 82.
    Fertig N, Blick RH, Behrends JC (2002) Whole cell patch clamp recording performed on a planar glass chip. Biophys J 82:3056–3062CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Farre C, Fertig N (2012) HTS techniques for patch clamp-based ion channel screening - advances and economy. Expert Opin Drug Discov 7:515–524CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  1. 1.Division of Cardiology, Department of MedicineJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations