Schizosaccharomyces pombe Biotechnological Applications in Winemaking

  • Ángel Benito
  • Fernando Calderón
  • Santiago BenitoEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1721)


The traditional way of producing wine is through the use of Saccharomyces cerevisiae in order to convert glucose and fructose into alcohol. In the case of red wines, after this alcoholic fermentation lactic bacteria Oenococus oeni is used to stabilize wine from a microbiological point of view by converting malic acid into lactic acid that it is not a microbiological substract. The yeast species Schizosaccharomyces pombe was traditionally considered spoilage yeast. Nevertheless, during the last decade it started to be used due to its unique malic acid deacidification ability to reduce the harsh acidity of wines from northern Europe, by converting malic acid to ethanol and CO2 without producing lactic acid as lactic bacteria does. Additionally, during the last years, S. pombe has started to be used to solve the problems of modern winemaking industry such as increasing food quality or food safety. Some of those new uses, different from its traditional malic acid deacidification, are: high autolytic polysaccharides release, gluconic acid reduction, urease activity that make impossible ethyl carbamate (toxic compound) formation, high pyruvic acid production, that is related to color improvement, and removing lactic bacteria subtracts while avoiding biogenic amines (toxic compounds such as histamine) formation.

Key words

Schizosaccharomyces pombe Winemaking Malic acid Microbiological deacidification Malic acid Food safety Urea Ethyl carbamate Pyruvic acid Glycerol Ageing over lees Anthocyanins Pyranoanthocyanins Vitisin Fermentation Wine 


  1. 1.
    Benito S, Palomero P, Calderón F, Palmero D, Suárez-Lepe JA (2014) Schizosaccharomyces. In: Batt CATM (ed) Encyclopedia of food microbiology, 2nd edn. Elsevier, Amsterdam, pp 365–370CrossRefGoogle Scholar
  2. 2.
    Benito S, Palomero F, Morata A, Calderon F, Palmero D, Suarez-Lepe JA (2013) Physiological features of Schizosaccharomyces pombe of interest in making of white wines. Eur Food Res Technol 236(1):29–36CrossRefGoogle Scholar
  3. 3.
    Benito S, Palomero P, Morata A, Calderón F, Suárez-Lépe JA (2012) New applications for Schizosaccharomyces pombe in the alcoholic fermentation of red wines. Int J Food Sci Tech 47(10):2101–2108CrossRefGoogle Scholar
  4. 4.
    Pathania N, Kanwar S, Jhang T, Koundal KR, Sharma TR (2010) Application of different molecular techniques for deciphering genetic diversity among yeast isolates of traditional fermented food products of Western Himalayas. World J Microbiol Biotechnol 26(9):1539–1547CrossRefGoogle Scholar
  5. 5.
    Jeffares DC, Rallis C, Rieux A, Speed D, Převorovský M, Mourier T, Marsellach FX, Iqbal Z, Lau W, Cheng TM, Pracana R, Mülleder M, Lawson JL, Chessel A, Bala S, Hellenthal G, O'Fallon B, Keane T, Simpson JT, Bischof L, Tomiczek B, Bitton DA, Sideri T, Codlin S, Hellberg JE, van Trigt L, Jeffery L, Li JJ, Atkinson S, Thodberg M, Febrer M, McLay K, Drou N, Brown W, Hayles J, Carazo Salas RE, Ralser M, Maniatis N, Balding DJ, Balloux F, Durbin R, Bähler J (2015) The genomic and phenotypic diversity of Schizosaccharomyces pombe. Nat Genet 47(3):235–241CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Benito S, Gálvez L, Palomero F, Calderón F, Morata A, Suárez-Lepe JA (2013) Schizosaccharomyces selective differential media. Afr J Microbiol Res 7(24):3026–3036CrossRefGoogle Scholar
  7. 7.
    Benito S, Palomero F, Calderón F, Palmero D, Suárez-Lepe JA (2014) Selection of appropriate Schizosaccharomyces strains for winemaking. Food Microbiol 42:218–224CrossRefPubMedGoogle Scholar
  8. 8.
    Benito Á, Jeffares D, Palomero F, Calderón F, Bai FY, Bähler J, Benito S (2016) Selected Schizosaccharomyces pombe strains have characteristics that are beneficial for winemaking. PLoS One 11(3):e0151102CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Domizio P, Liu Y, Bisson L, Barile D (2017) Cell wall polysaccharides released during the alcoholic fermentation by Schizosaccharomyces pombe and S. japonicus: quantification and characterization. Food Microbiol 61:136–149CrossRefPubMedGoogle Scholar
  10. 10.
    Peinado RA, Moreno JJ, Maestre O, Mauricio JC (2007) Removing gluconic acid by using different treatments with a Schizosaccharomyces pombe mutant: effect on fermentation byproducts. Food Chem 104(2):457–465CrossRefGoogle Scholar
  11. 11.
    Peinado RA, Maestre O, Mauricio JC, Moreno JJ (2009) Use of a Schizosaccharomyces pombe mutant to reduce the content in gluconic acid of must obtained from rotten grapes. J Agric Food Chem 57(6):2368–2377CrossRefPubMedGoogle Scholar
  12. 12.
    Mylona AE, Del Fresno JM, Palomero F, Loira I, Bañuelos MA, Morata A, Calderón F, Benito S, Suárez-Lepe JA (2016) Use of schizosaccharomyces strains for wine fermentation—effect on the wine composition and food safety. Int J Food Microbiol 232:63–72CrossRefPubMedGoogle Scholar
  13. 13.
    Benito Á, Calderón F, Benito S (2016) Combined use of s. pombe and l. thermotolerans in winemaking. Beneficial effects determined through the study of wines’ analytical characteristics. Molecules 21(12):1744CrossRefGoogle Scholar
  14. 14.
    Benito A, Palomero F, Calderón F, Benito S (2015) Combine use of selected Schizosaccharomyces pombe and Lachancea thermotolerans yeast strains as an alternative to thetraditional malolactic fermentation in red wine production. Molecules 20(6):9510–9523CrossRefPubMedGoogle Scholar
  15. 15.
    Benito S, Palomero F, Gálvez L, Morata A, Calderón F, Palmero D, Suárez-Lepe JA (2014) Quality and composition of red wine fermented with Schizosaccharomyces pombe as sole fermentative yeast, and in mixed and sequential fermentations with Saccharomyces cerevisiae. Food Technol Biotechnol 52(3):376–382Google Scholar
  16. 16.
    Benito S, Morata A, Palomero F, Suárez-Lepe JA (2011) Formation of vinylphenolic pyranoanthocyanins by Saccharomyces cerevisiae and Pichia guillermondii in red wines produced following different fermentation strategies. Food Chem 124(1):15–23CrossRefGoogle Scholar
  17. 17.
    Benito S, Palomero F, Morata A, Uthurry C, Suárez-Lepe JA (2009) Minimization of ethylphenol precursors in red wines via the formation of pyranoanthocyanins by selected yeasts. Int J Food Microbiol 132(2):145–152CrossRefPubMedGoogle Scholar
  18. 18.
    Ciani M, Comitini F, Mannazzu I, Domizio P (2010) Controlled mixed culture fermentation: a new perspective on the use of non-Saccharomyces yeasts in winemaking. FEMS Yeast Res 10(2):123–133. CrossRefPubMedGoogle Scholar
  19. 19.
    Xia C, Hong M, YunFeng Z, YongNing W (2014) Research progress on toxicity and contamination of ethyl carbamate in fermented foods. J Food Safety and Quality 5(9):2617–2622Google Scholar
  20. 20.
    Deak T (2007) Handbook of food spoilage yeasts, 2nd edn. CRC Press, Taylor & Francis Group, Boca Raton, FL, pp 294–297Google Scholar
  21. 21.
    Lubbers MW, Rodriguez SB, Honey NK, Thornton RJ (1996) Purification and characterization of urease from Schizosaccharomyces pombe. Can J Microbiol 42(2):132–140CrossRefPubMedGoogle Scholar
  22. 22.
    Domizio P, Liu Y, Bisson LF, Barile D (2014) Use of non-Saccharomyces wine yeasts as novel sources of mannoproteins in wine. Food Microbiol 43:5–15CrossRefPubMedGoogle Scholar
  23. 23.
    Benito A, Calderón F, Palomero F, Benito S (2016) Quality and composition of Airen wines fermented by sequential inoculation of Lachancea thermotolerans and Saccharomyces cerevisiae. Food Technol Biotechnol 54(2):135–144CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Ángel Benito
    • 1
  • Fernando Calderón
    • 1
  • Santiago Benito
    • 1
    Email author
  1. 1.Department of Chemistry and Food TechnologyPolytechnic University of MadridMadridSpain

Personalised recommendations