Advertisement

In Situ Chromatin-Binding Assay Using Epifluorescent Microscopy in S. pombe

  • Jinpu Yang
  • Fei LiEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1721)

Abstract

Chromatin-associated proteins play critical roles in many cellular processes, including gene expression, epigenetic regulation, DNA repair, recombination, and replication. Especially, epigenetic landscape, shaped by a variety of chromatin-binding proteins, is dynamic and regulated in a context-dependent manner. In situ chromatin-binding assay is a powerful but simple tool to investigate how proteins, such as epigenetic components, associate with chromatin. This approach relies on the fact that chromatin bound proteins are more resistant to detergent extraction. Here, we describe a protocol for the in situ chromatin-binding assay used in Schizosaccaromyces pombe.

Key words

Epigenetics In situ chromatin binding H3 CENP-A GFP Fission yeast Schizosaccaromyces pombe 

Notes

Acknowledgments

We thank Dr. Qianhua Dong, Hyoju Ban, and Dr. David Aristizabal Corrales for reading the manuscript. This work was supported by National Institutes of Health grant R01GM106037 (to F.L.) and NSF grant MCB-1330557 (to F.L.). F. L. is a Pew Scholar in the Biomedical Sciences, supported by The Pew Charitable Trusts.

References

  1. 1.
    Allshire RC, Ekwall K (2015) Epigenetic regulation of chromatin states in Schizosaccharomyces pombe. Cold Spring Harb Perspect Biol 7(7):a018770. https://doi.org/10.1101/cshperspect.a018770 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Buscaino A, White SA, Houston DR, Lejeune E, Simmer F, de Lima Alves F, Diyora PT, Urano T, Bayne EH, Rappsilber J, Allshire RC (2012) Raf1 is a DCAF for the Rik1 DDB1-like protein and has separable roles in siRNA generation and chromatin modification. PLoS Genet 8(2):e1002499. https://doi.org/10.1371/journal.pgen.1002499 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Gonzalez M, He H, Sun S, Li C, Li F (2013) Cell cycle-dependent deposition of CENP-A requires the Dos1/2-Cdc20 complex. Proc Natl Acad Sci U S A 110(2):606–611. https://doi.org/10.1073/pnas.1214874110 CrossRefPubMedGoogle Scholar
  4. 4.
    Gonzalez M, Li F (2012) DNA replication, RNAi and epigenetic inheritance. Epigenetics 7(1):14–19. https://doi.org/10.4161/epi.7.1.18545 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Li F, Goto DB, Zaratiegui M, Tang X, Martienssen R, Cande WZ (2005) Two novel proteins, dos1 and dos2, interact with rik1 to regulate heterochromatic RNA interference and histone modification. Curr Biol 15(16):1448–1457. https://doi.org/10.1016/j.cub.2005.07.021 CrossRefPubMedGoogle Scholar
  6. 6.
    Li F, Huarte M, Zaratiegui M, Vaughn MW, Shi Y, Martienssen R, Cande WZ (2008) Lid2 is required for coordinating H3K4 and H3K9 methylation of heterochromatin and euchromatin. Cell 135(2):272–283. https://doi.org/10.1016/j.cell.2008.08.036 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    He H, Gonzalez M, Zhang F, Li F (2014) DNA replication components as regulators of epigenetic inheritance—lesson from fission yeast centromere. Protein Cell 5(6):411–419. https://doi.org/10.1007/s13238-014-0049-9 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Henikoff S, Ahmad K, Malik HS (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293(5532):1098–1102. https://doi.org/10.1126/science.1062939 CrossRefPubMedGoogle Scholar
  9. 9.
    Yang J, Li F (2016) Are all repeats created equal? Understanding DNA repeats at an individual level. Curr Genet. https://doi.org/10.1007/s00294-016-0619-x
  10. 10.
    Dedon PC, Soults JA, Allis CD, Gorovsky MA (1991) A simplified formaldehyde fixation and immunoprecipitation technique for studying protein-DNA interactions. Anal Biochem 197(1):83–90CrossRefPubMedGoogle Scholar
  11. 11.
    Collas P (2010) The current state of chromatin immunoprecipitation. Mol Biotechnol 45(1):87–100. https://doi.org/10.1007/s12033-009-9239-8 CrossRefPubMedGoogle Scholar
  12. 12.
    Bawa-Khalfe T (2016) Isolation of in vivo SUMOylated chromatin-bound proteins. Methods Mol Biol 1475:205–216. https://doi.org/10.1007/978-1-4939-6358-4_15 CrossRefPubMedGoogle Scholar
  13. 13.
    Ricke RM, Bielinsky AK (2005) Easy detection of chromatin binding proteins by the histone association assay. Biol Proced Online 7:60–69. https://doi.org/10.1251/bpo106 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kearsey SE, Montgomery S, Labib K, Lindner K (2000) Chromatin binding of the fission yeast replication factor mcm4 occurs during anaphase and requires ORC and cdc18. EMBO J 19(7):1681–1690. https://doi.org/10.1093/emboj/19.7.1681 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Gonzalez M, He H, Dong Q, Sun S, Li F (2014) Ectopic centromere nucleation by CENP—a in fission yeast. Genetics 198(4):1433–1446. https://doi.org/10.1534/genetics.114.171173 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  1. 1.Department of BiologyNew York UniversityNew YorkUSA

Personalised recommendations