Skip to main content

Wide-band Electrical Impedance Spectroscopy (EIS) Measures S. pombe Cell Growth in vivo

  • Protocol
  • First Online:
Schizosaccharomyces pombe

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1721))

Abstract

This chapter describes a microfluidic device that enables immobilization and culturing of single rod-shaped S. pombe cells in a stand-up mode. The wide-band electrical impedance spectroscopy (EIS) has been integrated in the microfluidic device to continuously measure cell growth of single S. pombe cells. Cell growth curves showing cellular and intracellular features at high spatiotemporal resolution can be obtained from EIS signals. The features include longitudinal cell elongation in the G2 phase, mitosis, and cell division during an entire cell cycle of S. pombe cells. Microfluidics-based EIS systems provide, hence, a tool for dynamic single-cell studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Di Carlo D, Lee LP (2006) Dynamic single-cell analysis for quantitative biology. Anal Chem 78:7918–7925

    Article  PubMed  Google Scholar 

  2. Wang DJ, Bodovitz S (2010) Single cell analysis: the new frontier in ‘omics’. Trends Biotechnol 28:281–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schubert C (2011) Single-cell analysis: the deepest differences. Nature 480:133–137

    Article  CAS  PubMed  Google Scholar 

  4. Stender AS, Marchuk K, Liu C, Sander S, Meyer MW, Smith EA, Neupane B, Wang G, Li J, Cheng JX, Huang B, Fang N (2013) Single cell optical imaging and spectroscopy. Chem Rev 113:2469–2527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shemiakina II, Ermakova GV, Cranfill PJ, Baird MA, Evans RA, Souslova EA, Staroverov DB, Gorokhovatsky AY, Putintseva EV, Gorodnicheva TV, Chepurnykh TV, Strukova L, Lukyanov S, Zaraisky AG, Davidson MW, Chudakov DM, Shcherbo D (2012) A monomeric red fluorescent protein with low cytotoxicity. Nat Commun 3:1204

    Article  CAS  PubMed  Google Scholar 

  6. Zhou J, Lin J, Zhou C, Deng X, Xia B (2011) Cytotoxicity of red fluorescent protein DsRed is associated with the suppression of Bcl-xL translation. FEBS Lett 585:821–827

    Article  CAS  PubMed  Google Scholar 

  7. Morgan H, Sun T, Holmes D, Gawad S, Green NG (2007) Single cell dielectric spectroscopy. J Phys D Appl Phys 40:61–70

    Article  CAS  Google Scholar 

  8. Gawad S, Cheung K, Seger U, Bertsch A, Renaud P (2004) Dielectric spectroscopy in a micromachined flow cytometer: theoretical and practical considerations. Lab Chip 4:241–251

    Article  CAS  PubMed  Google Scholar 

  9. Gawad S, Schild L, Renaud P (2001) Micromachined impedance spectroscopy flow cytometer for cell analysis and particle sizing. Lab Chip 1:76–82

    Article  CAS  PubMed  Google Scholar 

  10. Haandbaek N, Bürgel SC, Heer F, Hierlemann A (2014) Characterization of subcellular morphology of single yeast cells using high frequency microfluidic impedance cytometer. Lab Chip 14:369–377

    Article  CAS  PubMed  Google Scholar 

  11. Zhu Z, Frey O, Haandbaek N, Franke F, Rudolf F, Hierlemann A (2015) Time-lapse electrical impedance spectroscopy for monitoring the cell cycle of single immobilized S. pombe cells. Sci Rep 5:17180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ghenim L, Kaji H, Hoshino Y, Ishibashi T, Haguet V, Gidrol X, Nishizawa M (2010) Monitoring impedance changes associated with motility and mitosis of a single cell. Lab Chip 10:2546–2550

    Article  CAS  PubMed  Google Scholar 

  13. Zhu Z, Frey O, Franke F, Haandbaek N, Hierlemann A (2014) Real-time monitoring of immobilized single yeast cells through multifrequency electrical impedance spectroscopy. Anal Bioanal Chem 406:7015–7025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. d’Entremont MI, Paulson AT, Marble AE (2002) Impedance spectroscopy: an accurate method of differentiating between viable and ischaemic or infarcted muscle tissue. Med Biol Eng Comput 40:380–387

    Article  PubMed  Google Scholar 

  15. Qiu Y, Liao R, Zhang X (2008) Real-time monitoring primary cardiomyocyte adhesion based on electrochemical impedance spectroscopy and electrical cell−substrate impedance sensing. Anal Chem 80:990–996

    Article  CAS  PubMed  Google Scholar 

  16. Sun T, Morgan H (2010) Single-cell microfluidic impedance spectroscopy: a review. Microfluid Nanofluid 8:423–443

    Article  CAS  Google Scholar 

  17. Han X, van Berkel C, Gwyer J, Capretto L, Morgan H (2012) Microfluidic lysis of human blood for leukocyte analysis using single cell impedance cytometry. Anal Chem 84:1070–1075

    Article  CAS  PubMed  Google Scholar 

  18. Zheng Y, Shojaei-Baghini E, Azad A, Wang C, Sun Y (2012) High-throughput biophysical measurement of human red blood cells. Lab Chip 12:2560–2567

    Article  CAS  PubMed  Google Scholar 

  19. Song H, Wang Y, Rosano JM, Prabhakarpandian B, Garson C, Pant K, Lai E (2013) A microfluidic impedance flow cytometer for identification of differentiation state of stem cells. Lab Chip 13:2300–2310

    Article  CAS  PubMed  Google Scholar 

  20. Du E, Ha S, Diez-Silva M, Dao M, Suresh S, Chandrakasan AP (2013) Electric impedance microflow cytometry for characterization of cell disease states. Lab Chip 13:3903–3909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zare RN, Kim S (2010) Microfluidic platforms for single-cell analysis. Annu Rev Biomed Eng 12:187–201

    Article  CAS  PubMed  Google Scholar 

  22. Lecault V, White AK, Singhal A, Hansen CL (2012) Microfluidic single cell analysis: from promise to practice. Curr Opin Chem Biol 16:381–390

    Article  CAS  PubMed  Google Scholar 

  23. Yin HB, Marshall D (2012) Microfluidics for single cell analysis. Curr Opin Biotechnol 23:110–119

    Article  CAS  PubMed  Google Scholar 

  24. Rettig JR, Folch A (2005) Large-scale single-cell trapping and imaging using microwell arrays. Anal Chem 77:5628–5634

    Article  CAS  PubMed  Google Scholar 

  25. Wood DK, Weingeist DM, Bhatia SN, Engelward BP (2010) Single cell trapping and DNA damage analysis using microwell arrays. Proc Natl Acad Sci U S A 107:10008–10013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Park MC, Hur JY, Cho HS, Park SH, Suh KY (2011) High-throughput single-cell quantification using simple microwell-based cell docking and programmable time-course live-cell imaging. Lab Chip 11:79–86

    Article  CAS  PubMed  Google Scholar 

  27. Di Carlo D, Wu LY, Lee LP (2006) Dynamic single cell culture array. Lab Chip 6:1445–1449

    Article  PubMed  Google Scholar 

  28. Valero A, Post JN, van Nieuwkasteele JW, Ter Braak PM, Kruijer W, van den Berg A (2008) Gene transfer and protein dynamics in stem cells using single cell electroporation in a microfluidic device. Lab Chip 8:62–67

    Article  CAS  PubMed  Google Scholar 

  29. Eyer K, Kuhn P, Hanke C, Dittrich PS (2012) A microchamber array for single cell isolation and analysis of intracellular biomolecules. Lab Chip 12:765–772

    Article  CAS  PubMed  Google Scholar 

  30. Chung JH, Kim YJ, Yoon E (2011) Highly-efficient single-cell capture in microfluidic array chips using differential hydrodynamic guiding structures. Appl Phys Lett 98:123701

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lan KC, Jang LS (2011) Integration of single-cell trapping and impedance measurement utilizing microwell electrodes. Biosens Bioelectron 26:2025–2031

    Article  CAS  PubMed  Google Scholar 

  32. Park H, Kim D, Yun KS (2010) Single-cell manipulation on microfluidic chip by dielectrophoretic actuation and impedance detection. Sensors Actuators B Chem 150:167–173

    Article  CAS  Google Scholar 

  33. Malleo D, Nevill JT, Lee LP, Morgan H (2010) Continuous differential impedance spectroscopy of single cells. Microfluid Nanofluid 9:191–198

    Article  PubMed  Google Scholar 

  34. Zhu Z, Xu X, Fang F, Pan D, Huang Q-A (2016) Investigation of geometry-dependent sensing characteristics of microfluidic electrical impedance spectroscopy through modeling and simulation. Sensors Actuators B Chem 236:515–524

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 61404027 and No. 61774036), the National Key Basic Research Program of China (No. 2015CB352100), and the Swiss SystemsX.ch program within the RTD project “CINA.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhu, Z., Frey, O., Hierlemann, A. (2018). Wide-band Electrical Impedance Spectroscopy (EIS) Measures S. pombe Cell Growth in vivo. In: Singleton, T. (eds) Schizosaccharomyces pombe. Methods in Molecular Biology, vol 1721. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7546-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7546-4_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7545-7

  • Online ISBN: 978-1-4939-7546-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics