Advertisement

Wide-band Electrical Impedance Spectroscopy (EIS) Measures S. pombe Cell Growth in vivo

  • Zhen ZhuEmail author
  • Olivier Frey
  • Andreas Hierlemann
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1721)

Abstract

This chapter describes a microfluidic device that enables immobilization and culturing of single rod-shaped S. pombe cells in a stand-up mode. The wide-band electrical impedance spectroscopy (EIS) has been integrated in the microfluidic device to continuously measure cell growth of single S. pombe cells. Cell growth curves showing cellular and intracellular features at high spatiotemporal resolution can be obtained from EIS signals. The features include longitudinal cell elongation in the G2 phase, mitosis, and cell division during an entire cell cycle of S. pombe cells. Microfluidics-based EIS systems provide, hence, a tool for dynamic single-cell studies.

Key words

Schizosaccharomyces pombe Microfluidics Electrical impedance spectroscopy Cell growth Cell cycle Nuclear division 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 61404027 and No. 61774036), the National Key Basic Research Program of China (No. 2015CB352100), and the Swiss SystemsX.ch program within the RTD project “CINA.”

References

  1. 1.
    Di Carlo D, Lee LP (2006) Dynamic single-cell analysis for quantitative biology. Anal Chem 78:7918–7925CrossRefPubMedGoogle Scholar
  2. 2.
    Wang DJ, Bodovitz S (2010) Single cell analysis: the new frontier in ‘omics’. Trends Biotechnol 28:281–290CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Schubert C (2011) Single-cell analysis: the deepest differences. Nature 480:133–137CrossRefPubMedGoogle Scholar
  4. 4.
    Stender AS, Marchuk K, Liu C, Sander S, Meyer MW, Smith EA, Neupane B, Wang G, Li J, Cheng JX, Huang B, Fang N (2013) Single cell optical imaging and spectroscopy. Chem Rev 113:2469–2527CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Shemiakina II, Ermakova GV, Cranfill PJ, Baird MA, Evans RA, Souslova EA, Staroverov DB, Gorokhovatsky AY, Putintseva EV, Gorodnicheva TV, Chepurnykh TV, Strukova L, Lukyanov S, Zaraisky AG, Davidson MW, Chudakov DM, Shcherbo D (2012) A monomeric red fluorescent protein with low cytotoxicity. Nat Commun 3:1204CrossRefPubMedGoogle Scholar
  6. 6.
    Zhou J, Lin J, Zhou C, Deng X, Xia B (2011) Cytotoxicity of red fluorescent protein DsRed is associated with the suppression of Bcl-xL translation. FEBS Lett 585:821–827CrossRefPubMedGoogle Scholar
  7. 7.
    Morgan H, Sun T, Holmes D, Gawad S, Green NG (2007) Single cell dielectric spectroscopy. J Phys D Appl Phys 40:61–70CrossRefGoogle Scholar
  8. 8.
    Gawad S, Cheung K, Seger U, Bertsch A, Renaud P (2004) Dielectric spectroscopy in a micromachined flow cytometer: theoretical and practical considerations. Lab Chip 4:241–251CrossRefPubMedGoogle Scholar
  9. 9.
    Gawad S, Schild L, Renaud P (2001) Micromachined impedance spectroscopy flow cytometer for cell analysis and particle sizing. Lab Chip 1:76–82CrossRefPubMedGoogle Scholar
  10. 10.
    Haandbaek N, Bürgel SC, Heer F, Hierlemann A (2014) Characterization of subcellular morphology of single yeast cells using high frequency microfluidic impedance cytometer. Lab Chip 14:369–377CrossRefPubMedGoogle Scholar
  11. 11.
    Zhu Z, Frey O, Haandbaek N, Franke F, Rudolf F, Hierlemann A (2015) Time-lapse electrical impedance spectroscopy for monitoring the cell cycle of single immobilized S. pombe cells. Sci Rep 5:17180CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ghenim L, Kaji H, Hoshino Y, Ishibashi T, Haguet V, Gidrol X, Nishizawa M (2010) Monitoring impedance changes associated with motility and mitosis of a single cell. Lab Chip 10:2546–2550CrossRefPubMedGoogle Scholar
  13. 13.
    Zhu Z, Frey O, Franke F, Haandbaek N, Hierlemann A (2014) Real-time monitoring of immobilized single yeast cells through multifrequency electrical impedance spectroscopy. Anal Bioanal Chem 406:7015–7025CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    d’Entremont MI, Paulson AT, Marble AE (2002) Impedance spectroscopy: an accurate method of differentiating between viable and ischaemic or infarcted muscle tissue. Med Biol Eng Comput 40:380–387CrossRefPubMedGoogle Scholar
  15. 15.
    Qiu Y, Liao R, Zhang X (2008) Real-time monitoring primary cardiomyocyte adhesion based on electrochemical impedance spectroscopy and electrical cell−substrate impedance sensing. Anal Chem 80:990–996CrossRefPubMedGoogle Scholar
  16. 16.
    Sun T, Morgan H (2010) Single-cell microfluidic impedance spectroscopy: a review. Microfluid Nanofluid 8:423–443CrossRefGoogle Scholar
  17. 17.
    Han X, van Berkel C, Gwyer J, Capretto L, Morgan H (2012) Microfluidic lysis of human blood for leukocyte analysis using single cell impedance cytometry. Anal Chem 84:1070–1075CrossRefPubMedGoogle Scholar
  18. 18.
    Zheng Y, Shojaei-Baghini E, Azad A, Wang C, Sun Y (2012) High-throughput biophysical measurement of human red blood cells. Lab Chip 12:2560–2567CrossRefPubMedGoogle Scholar
  19. 19.
    Song H, Wang Y, Rosano JM, Prabhakarpandian B, Garson C, Pant K, Lai E (2013) A microfluidic impedance flow cytometer for identification of differentiation state of stem cells. Lab Chip 13:2300–2310CrossRefPubMedGoogle Scholar
  20. 20.
    Du E, Ha S, Diez-Silva M, Dao M, Suresh S, Chandrakasan AP (2013) Electric impedance microflow cytometry for characterization of cell disease states. Lab Chip 13:3903–3909CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Zare RN, Kim S (2010) Microfluidic platforms for single-cell analysis. Annu Rev Biomed Eng 12:187–201CrossRefPubMedGoogle Scholar
  22. 22.
    Lecault V, White AK, Singhal A, Hansen CL (2012) Microfluidic single cell analysis: from promise to practice. Curr Opin Chem Biol 16:381–390CrossRefPubMedGoogle Scholar
  23. 23.
    Yin HB, Marshall D (2012) Microfluidics for single cell analysis. Curr Opin Biotechnol 23:110–119CrossRefPubMedGoogle Scholar
  24. 24.
    Rettig JR, Folch A (2005) Large-scale single-cell trapping and imaging using microwell arrays. Anal Chem 77:5628–5634CrossRefPubMedGoogle Scholar
  25. 25.
    Wood DK, Weingeist DM, Bhatia SN, Engelward BP (2010) Single cell trapping and DNA damage analysis using microwell arrays. Proc Natl Acad Sci U S A 107:10008–10013CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Park MC, Hur JY, Cho HS, Park SH, Suh KY (2011) High-throughput single-cell quantification using simple microwell-based cell docking and programmable time-course live-cell imaging. Lab Chip 11:79–86CrossRefPubMedGoogle Scholar
  27. 27.
    Di Carlo D, Wu LY, Lee LP (2006) Dynamic single cell culture array. Lab Chip 6:1445–1449CrossRefPubMedGoogle Scholar
  28. 28.
    Valero A, Post JN, van Nieuwkasteele JW, Ter Braak PM, Kruijer W, van den Berg A (2008) Gene transfer and protein dynamics in stem cells using single cell electroporation in a microfluidic device. Lab Chip 8:62–67CrossRefPubMedGoogle Scholar
  29. 29.
    Eyer K, Kuhn P, Hanke C, Dittrich PS (2012) A microchamber array for single cell isolation and analysis of intracellular biomolecules. Lab Chip 12:765–772CrossRefPubMedGoogle Scholar
  30. 30.
    Chung JH, Kim YJ, Yoon E (2011) Highly-efficient single-cell capture in microfluidic array chips using differential hydrodynamic guiding structures. Appl Phys Lett 98:123701CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Lan KC, Jang LS (2011) Integration of single-cell trapping and impedance measurement utilizing microwell electrodes. Biosens Bioelectron 26:2025–2031CrossRefPubMedGoogle Scholar
  32. 32.
    Park H, Kim D, Yun KS (2010) Single-cell manipulation on microfluidic chip by dielectrophoretic actuation and impedance detection. Sensors Actuators B Chem 150:167–173CrossRefGoogle Scholar
  33. 33.
    Malleo D, Nevill JT, Lee LP, Morgan H (2010) Continuous differential impedance spectroscopy of single cells. Microfluid Nanofluid 9:191–198CrossRefPubMedGoogle Scholar
  34. 34.
    Zhu Z, Xu X, Fang F, Pan D, Huang Q-A (2016) Investigation of geometry-dependent sensing characteristics of microfluidic electrical impedance spectroscopy through modeling and simulation. Sensors Actuators B Chem 236:515–524CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  1. 1.Southeast University, Key Laboratory of MEMS of Ministry of EducationNanjingChina
  2. 2.Department of Biosystems Science and Engineering, ETH ZurichBaselSwitzerland

Personalised recommendations