Skip to main content
Book cover

Peptidomics pp 359–367Cite as

Identification of Peptides in Spider Venom Using Mass Spectrometry

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1719))

Abstract

Spider venoms are composed of hundreds of proteins and peptides. Several of these venom toxins are cysteine-rich peptides in the mass range of 3–9 kDa. Small peptides (<3 kDa) can be fully characterized by mass spectrometry analysis, while proteins are generally identified by the bottom-up approach in which proteins are first digested with trypsin to generate shorter peptides for MS/MS characterization. In general, it is sufficient for protein identification to sequence two or more peptides, but for venom peptidomics it is desirable to completely elucidate peptide sequences and the number of disulfide bonds in the molecules. In this chapter we describe a methodology to completely sequence and determine the number of disulfide bonds of spider venom peptides in the mass range of 3–9 kDa by multiple enzyme digestion, mass spectrometry of native and digested peptides, de novo analysis, and sequence overlap alignment.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Escoubas P, Sollod B, King GF (2006) Venom landscapes: mining the complexity of spider venoms via a combined cDNA and mass spectrometric approach. Toxicon 47:650–663

    Article  CAS  PubMed  Google Scholar 

  2. Palagi A, Koh JMS, Leblanc M et al (2013) Unravelling the complex venom landscapes of lethal Australian funnel-web spiders (Hexathelidae: Atracinae) using LC-MALDI-TOF mass spectrometry. J Proteome 80:292–310

    Article  CAS  Google Scholar 

  3. Abreu TF, Sumitomo BN, Nishiyama MY et al (2017) Peptidomics of Acanthoscurria gomesiana spider venom reveals new toxins with potential antimicrobial activity. J Proteome 151:232–242

    Article  CAS  Google Scholar 

  4. Norton RS, Pallaghy PK (1998) The cystine knot structure of ion channel toxins and related polypeptides. Toxicon 36:1573–1583

    Article  CAS  PubMed  Google Scholar 

  5. Wang X, Connor M, Smith R et al (2000) Discovery and characterization of a family of insecticidal neurotoxins with a rare vicinal disulfide bridge. Nat Struct Biol 7:505–513

    Article  CAS  PubMed  Google Scholar 

  6. Peng K, Lin Y, Liang SP (2006) Nuclear magnetic resonance studies on Huwentoxin-XI from the Chinese bird spider Ornithoctonus huwena: 15N labeling and sequence-specific 1H, 15N nuclear magnetic resonance assignments. Acta Biochim Biophys Sin Shanghai 38:457–466

    Article  CAS  PubMed  Google Scholar 

  7. Rates B, Prates MV, Verano-Braga T et al (2013) μ-Theraphotoxin-An1a: primary structure determination and assessment of the pharmacological activity of a promiscuous anti-insect toxin from the venom of the tarantula Acanthoscurria natalensis (Mygalomorphae, Theraphosidae). Toxicon 70:123–134

    Article  CAS  PubMed  Google Scholar 

  8. Wan H, Lee KS, Kim BY et al (2013) A spider-derived Kunitz-type serine protease inhibitor that acts as a plasmin inhibitor and an elastase inhibitor. PLoS One 8:e53343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ayroza G, Ferreira ILC, Sayegh RSR et al (2012) Juruin: an antifungal peptide from the venom of the Amazonian Pink Toe spider, Avicularia juruensis, which contains the inhibitory cystine knot motif. Front Microbiol 3:324

    Article  PubMed  PubMed Central  Google Scholar 

  10. Windley MJ, Herzig V, Dziemborowicz SA et al (2012) Spider-venom peptides as bioinsecticides. Toxins (Basel) 4:191–227

    Article  CAS  Google Scholar 

  11. Mourão CB, Heghinian MD, Barbosa EA et al (2013) Characterization of a novel peptide toxin from Acanthoscurria paulensis spider venom: a distinct cysteine assignment to the HWTX-II family. Biochemistry 52:2440–2452

    Article  PubMed  Google Scholar 

  12. Tashima AK, Zelanis A, Kitano ES et al (2012) Peptidomics of three bothrops snake venoms: insights into the molecular diversification of proteomes and peptidomes. Mol Cell Proteomics 11:1245–1262

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sasaki K, Osaki T, Minamino N (2013) Large-scale identification of endogenous secretory peptides using electron transfer dissociation mass spectrometry. Mol Cell Proteomics 12:700–709

    Article  CAS  PubMed  Google Scholar 

  14. Rocha-e-Silva TAA, Sutti R, Hyslop S (2009) Milking and partial characterization of venom from the Brazilian spider Vitalius dubius (Theraphosidae). Toxicon 53:153–161

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, 2012/19321-9 and 2016/03839-0 to A. K. T.), Financiadora de Estudos e Projetos (FINEP) and Master’s degree fellowships from FAPESP (2014/17140-2) to R. L. L., and from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) to E. S. N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre K. Tashima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lomazi, R.L., Nishiduka, E.S., Silva, P.I., Tashima, A.K. (2018). Identification of Peptides in Spider Venom Using Mass Spectrometry. In: Schrader, M., Fricker, L. (eds) Peptidomics. Methods in Molecular Biology, vol 1719. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7537-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7537-2_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7536-5

  • Online ISBN: 978-1-4939-7537-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics