Skip to main content

Milk Peptidomics to Identify Functional Peptides and for Quality Control of Dairy Products

  • Protocol
  • First Online:
Book cover Peptidomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1719))

Abstract

Human milk and dairy products are important parts of human nutrition. In addition to supplying nutrients, milk proteins contain fragments—peptides—with important biological functions that are released during processing or digestion. Besides their potential functional relevance, peptides released during processing can be used as markers of ripening stage or product deterioration. Hence, identification and quantification of peptides in milk can be used to assay potential health benefits or product quality. This chapter describes how to extract, identify, and analyze peptides within breast milk, dairy products, and dairy digestive samples. We describe how to analyze extracted peptides with liquid chromatography-mass spectrometry, to use software to identify peptides based on database searching, and to extract peak areas for relative quantification of each peptide. We describe methods for data analysis, including predicting which enzymes are responsible for protein cleavage, identifying the site specificity of protein breakdown, mapping identified peptides to known bioactive peptides, and applying models to predict novel functional peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Migliore-Samour D, Floch F, Jollès P (1989) Biologically-active casein peptides implicated in immunomodulation. J Dairy Res 56:357–362

    Article  CAS  PubMed  Google Scholar 

  2. Jørgensen ALW, Juul-Madsen HR, Stagsted J (2010) Colostrum and bioactive, colostral peptides differentially modulate the innate immune response of intestinal epithelial cells. J Pept Sci 16:21–30

    Article  PubMed  Google Scholar 

  3. Brantl V (1984) Novel opioid peptides derived from human beta-casein: human beta-casomorphins. Eur J Pharmacol 106:213–214

    Article  CAS  PubMed  Google Scholar 

  4. Kampa M, Loukas S, Hatzoglou A et al (1996) Identification of a novel opioid peptide (Tyr-Val-Pro-Phe-Pro) derived from human alpha S1 casein (alpha S1-casomorphin, and alpha S1-casomorphin amide). Biochem J 319:903–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Aniansson G, Andersson B, Lindstedt R, Svanborg C (1990) Antiadhesive activity of human casein against Streptococcus pneumoniae and Haemophilus influenzae. Microb Pathog 8:315–323

    Article  CAS  PubMed  Google Scholar 

  6. Stromqvist M, Falk P, Bergstrom S et al (1995) Human-milk k-casein and inhibition of Helicobacter pylori adhesion to human gastric mucosa. J Pediatr Gastroenterol Nutr 21:288–296

    Article  CAS  PubMed  Google Scholar 

  7. Liepke C, Zucht H-D, Forssmann W-G, Ständker L (2001) Purification of novel peptide antibiotics from human milk. J Chromatogr B Analyt Technol Biomed Life Sci 752:369–377

    Article  CAS  Google Scholar 

  8. Yamada A, Sakurai T, Ochi D et al (2015) Antihypertensive effect of the bovine casein-derived peptide Met-Lys-Pro. Food Chem 172:441–446

    Article  CAS  PubMed  Google Scholar 

  9. Suetsuna K, Ukeda H, Ochi H (2000) Isolation and characterization of free radical scavenging activities peptides derived from casein. J Nutr Biochem 11:128–131

    Article  CAS  PubMed  Google Scholar 

  10. Dallas DC, Guerrero A, Khaldi N et al (2013) Extensive in vivo human milk peptidomics reveals specific proteolysis yielding protective antimicrobial peptides. J Proteome Res 12:2295–2304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Guerrero A, Dallas DC, Contreras S et al (2014) Mechanistic peptidomics: factors that dictate the specificity on the formation of endogenous peptides in human milk. Mol Cell Proteomics 13:3343–3351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dallas DC, Guerrero A, Khaldi N et al (2014) A peptidomic analysis of human milk digestion in the infant stomach reveals protein-specific degradation patterns. J Nutr 144:815–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Combes C, Paterson E, Amadò R (2002) Isolation and identification of low-molecular-weight peptides from Emmentaler cheese. J Food Sci 67:553–559

    Article  CAS  Google Scholar 

  14. Toelstede S, Hofmann T (2008) Sensomics mapping and identification of the key bitter metabolites in Gouda cheese. J Agric Food Chem 56:2795–2804

    Article  CAS  PubMed  Google Scholar 

  15. Gupta A, Mann B, Kumar R, Sangwan RB (2010) Identification of antioxidant peptides in cheddar cheese made with adjunct culture Lactobacillus casei ssp. casei 300. Milchwissenschaft 65:396–399

    CAS  Google Scholar 

  16. Sforza S, Cavatorta V, Lambertini F et al (2012) Cheese peptidomics: a detailed study on the evolution of the oligopeptide fraction in Parmigiano-Reggiano cheese from curd to 24 months of aging. J Dairy Sci 95:3514–3526

    Article  CAS  PubMed  Google Scholar 

  17. Miclo L, Roux E, Genay M et al (2012) Variability of hydrolysis of β-, αs1-, and αs2-caseins by 10 strains of Streptococcus thermophilus and resulting bioactive peptides. J Agric Food Chem 60:554–565

    Article  CAS  PubMed  Google Scholar 

  18. Dallas DC, Citerne F, Tian T et al (2016) Peptidomic analysis reveals proteolytic activity of kefir microorganisms on bovine milk proteins. Food Chem 197:273–284

    Article  CAS  PubMed  Google Scholar 

  19. Rauh VM, Johansen LB, Ipsen R et al (2014) Plasmin activity in UHT milk: relationship between proteolysis, age gelation, and bitterness. J Agric Food Chem 62:6852–6860

    Article  CAS  PubMed  Google Scholar 

  20. Jensen S, Sidsel J, Therese J et al (2015) Storage-induced changes in the sensory characteristics and volatiles of conventional and lactose-hydrolyzed UHT processed milk. Eur Food Res Technol 240:1247–1257

    Article  CAS  Google Scholar 

  21. Nielsen SD, Jansson T, Le TT et al (2017) Correlation between sensory properties and peptides derived from lactose-hydrolyzed UHT milk during storage. Int Dairy J 68:1–108

    Article  Google Scholar 

  22. Dallas DC, Guerrero A, Parker EA et al (2013) Peptidomic profile of milk of Holstein cows at peak lactation. J Agric Food Chem 62:58–65

    Article  PubMed  PubMed Central  Google Scholar 

  23. Guerrero A, Dallas DC, Contreras S et al (2014) Peptidomic analysis of healthy and subclinically mastitic bovine milk. Int Dairy J 46:46–52

    Article  PubMed Central  Google Scholar 

  24. Dallas DC, Guerrero A, Parker EA et al (2015) Current peptidomics: applications, purification, identification, quantification and functional analysis. Proteomics 15:1026–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schilling B, Rardin MJ, MacLean BX et al (2012) Platform-independent and label-free quantitation of proteomic data using MS1 extracted ion chromatograms in Skyline application to protein acetylation and phosphorylation. Mol Cell Proteomics 11:202–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vijayakumar V, Guerrero AN, Davey N et al (2012) EnzymePredictor: a tool for predicting and visualizing enzymatic cleavages of digested proteins. J Proteome Res 11:6056–6065

    Article  CAS  PubMed  Google Scholar 

  27. Waghu FH, Barai RS, Gurung P, Idicula-Thomas S (2016) CAMPR3: a database on sequences, structures and signatures of antimicrobial peptides. Nucleic Acids Res 44:D1094–D1097

    Article  CAS  PubMed  Google Scholar 

  28. Vizcaíno JA, Côté RG, Csordas A et al (2013) The Proteomics Identifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Res 41:D1063–D1069

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank C. J. Dillard for editing this manuscript. The authors gratefully acknowledge funding from the National Institutes of Health, Eunice Kennedy Shriver Institute of Child Health and Development (4R00HD079561) R00 Pathway to Independence Career Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Dallas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dallas, D., Nielsen, S.D. (2018). Milk Peptidomics to Identify Functional Peptides and for Quality Control of Dairy Products. In: Schrader, M., Fricker, L. (eds) Peptidomics. Methods in Molecular Biology, vol 1719. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7537-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7537-2_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7536-5

  • Online ISBN: 978-1-4939-7537-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics