Diffusion-Weighted Magnetic Resonance Imaging

  • Irene Guadilla
  • Daniel Calle
  • Pilar López-Larrubia
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1718)

Abstract

Magnetic resonance imaging (MRI) is a technique based on the contents and relaxation features of water in tissues. In basic MRI sequences, diffusion phenomenon of water molecules is not taken into account although it has a notable influence in the relaxation times, and therefore in the signal intensity of images. In fact, MRI techniques that take advantage of water diffusion have experienced a huge development in last years. Diffusion-weighted imaging (DWI) has spectacularly evolved reaching nowadays a great impact both in clinical and preclinical imaging—especially in the neuroimaging field—and in basic research. We present here a protocol to perform DWI studies in a high-field preclinical setup.

Key words

Magnetic resonance imaging Preclinical MRI Diffusion-weighted imaging Echo-planar imaging Apparent diffusion coefficient 

Notes

Acknowledgments

This work was supported by grant SAF2014-53739-R. IG held a predoctoral contract from Ministerio de Economía, Indrustria y Competitividad (MINECO) of Spain. DC held a postdoctoral contract from Consejo Superior de Investigaciones Científicas (CSIC).

References

  1. 1.
    Einstein A (1905) Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann Phys-Berlin 322(8):549–560CrossRefGoogle Scholar
  2. 2.
    Einstein A (1956) Investigations on the theory of the Brownian movement. Dover Publications, NYGoogle Scholar
  3. 3.
    Le Bihan D (1995) Diffusion, perfusion and functional magnetic resonance imaging. J Mal Vasc 20(3):203–214PubMedGoogle Scholar
  4. 4.
    Luypaert R, Boujraf S, Sourbron S, Osteaux M (2001) Diffusion and perfusion MRI: basic physics. Eur J Radiol 38(1):19–27CrossRefPubMedGoogle Scholar
  5. 5.
    Stark D, Bradley W (1999) Magnetic resonance imaging, vol 1. Mosby, St. Louis, MOGoogle Scholar
  6. 6.
    Stark D, Bradley W (1999) Magnetic resonance imaging, vol 3, Mosby St. Louis, MOGoogle Scholar
  7. 7.
    Davis S, Fisher M, Warach S (2003) Magnetic resonance imaging in stroke. Cambridge University Press, Cambridge, UKCrossRefGoogle Scholar
  8. 8.
    Einstein A (1956) Investigation of the theory of the Brownian movement. Dover, New YorkGoogle Scholar
  9. 9.
    Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system—a technical review. NMR Biomed 15(7–8):435–455. https://doi.org/10.1002/nbm.782 CrossRefPubMedGoogle Scholar
  10. 10.
    Mori S, Barker PB (1999) Diffusion magnetic resonance imaging: its principle and applications. Anat Rec 257(3):102–109CrossRefPubMedGoogle Scholar
  11. 11.
    Stejskal EO, Tanner JE (1965) Spin diffusion measurements: spin schoes in the presence of a time-dependent field gradient. J Chem Phys 42:288–292CrossRefGoogle Scholar
  12. 12.
    Tofts PS, Lloyd D, Clark CA, Barker GJ, Parker GJ, McConville P, Baldock C, Pope JM (2000) Test liquids for quantitative MRI measurements of self-diffusion coefficient in vivo. Magn Reson Med 43(3):368–374CrossRefPubMedGoogle Scholar
  13. 13.
    Holz M, Heil SR, Sacco A (2000) Temperature-dependent self-diffusion coefficients of water and six selected molecular liquids for calibration in accurate 1H NMR PFG measurements. Phys Chem Chem Phys 2(20):4740–4742CrossRefGoogle Scholar
  14. 14.
    Le Bihan D, Douek P, Argyropoulou M, Turner R, Patronas N, Fulham M (1993) Diffusion and perfusion magnetic resonance imaging in brain tumors. Top Magn Reson Imaging 5(1):25–31PubMedGoogle Scholar
  15. 15.
    van Gelderen P, de Vleeschouwer MH, DesPres D, Pekar J, van Zijl PC, Moonen CT (1994) Water diffusion and acute stroke. Magn Reson Med 31(2):154–163CrossRefPubMedGoogle Scholar
  16. 16.
    Hagmann P, Jonasson L, Maeder P, Thiran JP, Wedeen VJ, Meuli R (2006) Understanding diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. Radiographics 26(Suppl 1):S205–S223. https://doi.org/10.1148/rg.26si065510 CrossRefPubMedGoogle Scholar
  17. 17.
    Schaefer PW, Grant PE, Gonzalez RG (2000) Diffusion-weighted MR imaging of the brain. Radiology 217(2):331–345. https://doi.org/10.1148/radiology.217.2.r00nv24331 CrossRefPubMedGoogle Scholar
  18. 18.
    Mukherjee P, Berman JI, Chung SW, Hess CP, Henry RG (2008) Diffusion tensor MR imaging and fiber tractography: theoretic underpinnings. Am J Neuroradiol 29(4):632–641. https://doi.org/10.3174/ajnr.A1051 CrossRefPubMedGoogle Scholar
  19. 19.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Team RC (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  21. 21.
    Gruetter R (1993) Automatic, localized in vivo adjustment of all first- and second-order shim coils. Magn Reson Med 29(6):804–811CrossRefPubMedGoogle Scholar
  22. 22.
    Kanayama S, Kuhara S, Satoh K (1996) In vivo rapid magnetic field measurement and shimming using single scan differential phase mapping. Magn Reson Med 36(4):637–642CrossRefPubMedGoogle Scholar
  23. 23.
    Garcia-Palmero I, Lopez-Larrubia P, Cerdan S, Villalobo A (2013) Nuclear magnetic resonance imaging of tumour growth and neovasculature performance in vivo reveals Grb7 as a novel antiangiogenic target. NMR Biomed 26(9):1059–1069. https://doi.org/10.1002/nbm.2918 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Irene Guadilla
    • 1
  • Daniel Calle
    • 1
  • Pilar López-Larrubia
    • 1
  1. 1.Instituto de Investigaciones Biomédicas “Alberto Sols”CSIC/UAMMadridSpain

Personalised recommendations