In Utero MRI of Mouse Embryos

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1718)

Abstract

Genetically engineered mouse models are used extensively as models of human development and developmental diseases. Conventional histological approaches are static and two-dimensional, and do not provide a full understanding of the dynamic, spatiotemporal changes in developing mouse embryos. Magnetic resonance imaging (MRI) offers a noninvasive and longitudinal approach for three-dimensional in utero imaging of normal and mutant mouse embryos. In this chapter, we describe MRI approaches that have been developed for imaging the living embryonic mouse brain and vasculature. Details are provided on the animal preparation and setup, MRI equipment, acquisition and reconstruction methods that have been found to be most useful for in utero MRI, including examples of applications to fetal mouse neuroimaging.

Key words

Diffusion MRI Diffusion weighted gradient and spin echo (DW-GRASE) Field of excitation (FOE) Fractional anisotropy (FA) High-field MRI Mn-enhanced MRI (MEMRI) Phased array coil Three-dimensional (3D) 

Notes

Acknowledgements

We thank all the people, current and past, in the Zhang, Wu and Turnbull labs who have contributed to developing the protocols described in this chapter. This research was supported, in part, by grants from the National Institutes of Health: R01NS038461 and R01HL078665 (DHT); R01NS070909 and R01HD974593 (JZ); R21NS098018 (DW).

References

  1. 1.
    International Mouse Knockout Consortium, Collins FS, Rossant J, Wurst W (2007) A mouse for all reasons. Cell 128(1):9–13. https://doi.org/10.1016/j.cell.2006.12.018 CrossRefGoogle Scholar
  2. 2.
    Nieman BJ, Wong MD, Henkelman RM (2011) Genes into geometry: imaging for mouse development in 3D. Curr Opin Genet Dev 21(5):638–646. https://doi.org/10.1016/j.gde.2011.08.009 CrossRefPubMedGoogle Scholar
  3. 3.
    Aristizabal O, Mamou J, Ketterling JA, Turnbull DH (2013) High-throughput, high-frequency 3-D ultrasound for in utero analysis of embryonic mouse brain development. Ultrasound Med Biol 39(12):2321–2332. https://doi.org/10.1016/j.ultrasmedbio.2013.06.015 CrossRefPubMedGoogle Scholar
  4. 4.
    Nieman BJ, Turnbull DH (2010) Ultrasound and magnetic resonance microimaging of mouse development. Methods Enzymol 476:379–400. https://doi.org/10.1016/S0076-6879(10)76021-3 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Deans AE, Wadghiri YZ, Berrios-Otero CA, Turnbull DH (2008) Mn enhancement and respiratory gating for in utero MRI of the embryonic mouse central nervous system. Magn Reson Med 59(6):1320–1328. https://doi.org/10.1002/mrm.21609 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Wu D, Lei J, Rosenzweig JM, Burd I, Zhang J (2014) In utero localized diffusion MRI of the embryonic mouse brain microstructure and injury. J Magn Reson Imaging 42:717. https://doi.org/10.1002/jmri.24828 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Berrios-Otero CA, Nieman BJ, Parasoglou P, Turnbull DH (2012) In utero phenotyping of mouse embryonic vasculature with MRI. Magn Reson Med 67(1):251–257. https://doi.org/10.1002/mrm.22991 CrossRefPubMedGoogle Scholar
  8. 8.
    Nieman BJ, Szulc KU, Turnbull DH (2009) Three-dimensional, in vivo MRI with self-gating and image coregistration in the mouse. Magn Reson Med 61(5):1148–1157. https://doi.org/10.1002/mrm.21945 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Parasoglou P, Berrios-Otero CA, Nieman BJ, Turnbull DH (2013) High-resolution MRI of early-stage mouse embryos. NMR Biomed 26(2):224–231. https://doi.org/10.1002/nbm.2843 CrossRefPubMedGoogle Scholar
  10. 10.
    Pauly J, Nishimura D, Macovski A (1989) A linear class of large-tip-angle selective excitation pulses. J Magn Reson 82(3):571–587. https://doi.org/10.1016/0022-2364(89)90219-9 Google Scholar
  11. 11.
    Wu D, Reisinger D, Xu J, Fatemi SA, van Zijl PC, Mori S, Zhang J (2014) Localized diffusion magnetic resonance micro-imaging of the live mouse brain. NeuroImage 91:12–20. https://doi.org/10.1016/j.neuroimage.2014.01.014 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Aggarwal M, Mori S, Shimogori T, Blackshaw S, Zhang J (2010) Three-dimensional diffusion tensor microimaging for anatomical characterization of the mouse brain. Magn Reson Med 64(1):249–261. https://doi.org/10.1002/mrm.22426 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Wu D, Xu J, McMahon MT, van Zijl PC, Mori S, Northington FJ, Zhang J (2013) In vivo high-resolution diffusion tensor imaging of the mouse brain. NeuroImage 83:18–26. https://doi.org/10.1016/j.neuroimage.2013.06.012 CrossRefPubMedGoogle Scholar
  14. 14.
    Mao J, Mareci TH, Andrew ER (1988) Experimental-study of optimal selective 180-degrees radiofrequency pulses. J Magn Reson 79(1):1–10. https://doi.org/10.1016/0022-2364(88)90317-4 Google Scholar
  15. 15.
    Jones DK, Leemans A (2011) Diffusion tensor imaging. Methods Mol Biol 711:127–144. https://doi.org/10.1007/978-1-61737-992-5_6 CrossRefPubMedGoogle Scholar
  16. 16.
    Jiang H, van Zijl PC, Kim J, Pearlson GD, Mori S (2006) DtiStudio: resource program for diffusion tensor computation and fiber bundle tracking. Comput Methods Prog Biomed 81(2):106–116. https://doi.org/10.1016/j.cmpb.2005.08.004 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Jiangyang Zhang
    • 1
  • Dan Wu
    • 2
  • Daniel H. Turnbull
    • 1
    • 3
    • 4
  1. 1.Department of Radiology, Bernard and Irene Schwartz Center for Biomedical ImagingNew York University (NYU) School of MedicineNew YorkUSA
  2. 2.Department of RadiologyJohns Hopkins University School of MedicineBaltimoreUSA
  3. 3.Department of PathologyNYU School of MedicineNew YorkUSA
  4. 4.Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, NYU School of MedicineNew YorkUSA

Personalised recommendations