Advertisement

Cardiac MRI in Small Animals

  • Min-Chi Ku
  • Till Huelnhagen
  • Thoralf Niendorf
  • Andreas Pohlmann
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1718)

Abstract

Cardiac magnetic resonance (MR) imaging of mice is a valuable tool for the precise in vivo diagnosis and prognosis of heart defects. This detailed protocol describes the method of cardiac MR imaging in mice step by step. A series of MR images captures the contractile function of the mouse heart and post-processing of the image data yields morphometric parameters (myocardial mass, myocardial wall thickness, ventricular end-systolic and end-diastolic volume) as well as functional parameters (stroke volume and ejection fraction). This protocol may also serve as a starting point for MR imaging of rats, by using larger image dimensions (field-of-view) and MR hardware suitable for larger animals.

Key words

Magnetic resonance imaging (MRI) Cardiac magnetic resonance imaging (CMR) Mouse Heart Function 

Notes

Acknowledgement

The authors wish to thank Thomas Basse-Lüsebrink from Bruker Biospin MRI GmbH, Ettlingen, Germany, for providing the Ig-UTE image data.

References

  1. 1.
    Camacho P, Fan H, Liu Z, He JQ (2016) Small mammalian animal models of heart disease. Am J Cardiovasc Dis 6(3):70–80PubMedPubMedCentralGoogle Scholar
  2. 2.
    Zaragoza C, Gomez-Guerrero C, Martin-Ventura JL, Blanco-Colio L, Lavin B, Mallavia B, Tarin C, Mas S, Ortiz A, Egido J (2011) Animal models of cardiovascular diseases. J Biomed Biotechnol 2011:497841. https://doi.org/10.1155/2011/497841 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Stuckey DJ, McSweeney SJ, Thin MZ, Habib J, Price AN, Fiedler LR, Gsell W, Prasad SK, Schneider MD (2014) T(1) mapping detects pharmacological retardation of diffuse cardiac fibrosis in mouse pressure-overload hypertrophy. Circ Cardiovasc Imaging 7(2):240–249. https://doi.org/10.1161/CIRCIMAGING.113.000993 CrossRefPubMedGoogle Scholar
  4. 4.
    Coelho-Filho OR, Shah RV, Mitchell R, Neilan TG, Moreno H Jr, Simonson B, Kwong R, Rosenzweig A, Das S, Jerosch-Herold M (2013) Quantification of cardiomyocyte hypertrophy by cardiac magnetic resonance: implications for early cardiac remodeling. Circulation 128(11):1225–1233. https://doi.org/10.1161/CIRCULATIONAHA.112.000438 PubMedPubMedCentralGoogle Scholar
  5. 5.
    Abeykoon S, Sargent M, Wansapura JP (2012) Quantitative myocardial perfusion in mice based on the signal intensity of flow sensitized CMR. J Cardiovasc Magn Reson 14:73. https://doi.org/10.1186/1532-429X-14-73 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Beyers RJ, Smith RS, Xu Y, Piras BA, Salerno M, Berr SS, Meyer CH, Kramer CM, French BA, Epstein FH (2012) T(2) -weighted MRI of post-infarct myocardial edema in mice. Magn Reson Med 67(1):201–209. https://doi.org/10.1002/mrm.22975 CrossRefPubMedGoogle Scholar
  7. 7.
    Musthafa HS, Dragneva G, Lottonen L, Merentie M, Petrov L, Heikura T, Yla-Herttuala E, Yla-Herttuala S, Grohn O, Liimatainen T (2013) Longitudinal rotating frame relaxation time measurements in infarcted mouse myocardium in vivo. Magn Reson Med 69(5):1389–1395. https://doi.org/10.1002/mrm.24382 CrossRefPubMedGoogle Scholar
  8. 8.
    Vandsburger MH, Epstein FH (2011) Emerging MRI methods in translational cardiovascular research. J Cardiovasc Transl Res 4(4):477–492. https://doi.org/10.1007/s12265-011-9275-1 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Wagenhaus B, Pohlmann A, Dieringer MA, Els A, Waiczies H, Waiczies S, Schulz-Menger J, Niendorf T (2012) Functional and morphological cardiac magnetic resonance imaging of mice using a cryogenic quadrature radiofrequency coil. PLoS One 7(8):e42383. https://doi.org/10.1371/journal.pone.0042383 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Niendorf T, Pohlmann A, Reimann HM, Waiczies H, Peper E, Huelnhagen T, Seeliger E, Schreiber A, Kettritz R, Strobel K, MC K, Waiczies S (2015) Advancing cardiovascular, neurovascular, and renal magnetic resonance imaging in small rodents using cryogenic radiofrequency coil technology. Front Pharmacol 6:255. https://doi.org/10.3389/fphar.2015.00255 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hoerr V, Nagelmann N, Nauerth A, Kuhlmann MT, Stypmann J, Faber C (2013) Cardiac-respiratory self-gated cine ultra-short echo time (UTE) cardiovascular magnetic resonance for assessment of functional cardiac parameters at high magnetic fields. J Cardiovasc Magn Reson 15:59. https://doi.org/10.1186/1532-429X-15-59 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ring J, Hoerr V, Tuchscherr L, Kuhlmann MT, Loffler B, Faber C (2014) MRI visualization of Staphyloccocus aureus-induced infective endocarditis in mice. PLoS One 9(9):e107179. https://doi.org/10.1371/journal.pone.0107179 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Min-Chi Ku
    • 1
  • Till Huelnhagen
    • 1
  • Thoralf Niendorf
    • 1
    • 2
  • Andreas Pohlmann
    • 1
  1. 1.Berlin Ultrahigh Field Facility (B.U.F.F.)Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
  2. 2.DZHK (German Centre for Cardiovascular Research)BerlinGermany

Personalised recommendations