Skip to main content

Metabolic Model Reconstruction and Analysis of an Artificial Microbial Ecosystem

  • Protocol
  • First Online:
Book cover Metabolic Network Reconstruction and Modeling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1716))

Abstract

Microbial communities are widespread in the environment, and to isolate and identify species or to determine relations among microorganisms, some ‘omics methods like metagenomics, proteomics, and metabolomics have been used. When combined with various ‘omics data, models known as artificial microbial ecosystems (AME) are powerful methods that can make functional predictions about microbial communities. Reconstruction of an AME model is the first step for model analysis. Many techniques have been applied to the construction of AME models, e.g., the compartmentalization approach, community objectives method, and dynamic analysis approach. Of these approaches, species compartmentalization is the most relevant to genetics. Besides, some algorithms have been developed for the analysis of AME models. In this chapter, we present a general protocol for the use of the species compartmentalization method to reconstruct a model of microbial communities. Then, the analysis of an AME is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Caumette P, Bertrand J-C, Normand P (2015) Some historical elements of microbial ecology. In: Bertrand J-C, Caumette P, Lebaron P, Matheron R, Normand P, Sime-Ngando T (eds) Environmental microbiology: fundamentals and applications. Springer, New York, pp 9–24

    Google Scholar 

  2. Bowler C, Karl DM, Colwell RR (2009) Microbial oceanography in a sea of opportunity. Nature 459(7244):180–184

    Article  CAS  PubMed  Google Scholar 

  3. Sun X, Gao Y, Yang Y (2013) Recent advancement in microbial environmental research using metagenomics tools. Biodivers Sci 21(4):393–400

    CAS  Google Scholar 

  4. Yamada T (2011) Enterotypes of the human gut microbiome. Nature 473(7346):174–180

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chikere CB, Okpokwasili GC, Chikere BO (2011) Monitoring of microbial hydrocarbon remediation in the soil. 3 Biotech 1(3):117–138

    Article  PubMed  PubMed Central  Google Scholar 

  6. Singh BK, Bardgett RD, Smith P, Reay DS (2010) Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat Rev Microbiol 8(11):779–790

    Article  CAS  PubMed  Google Scholar 

  7. Wilmes P, Wexler M, Bond PL (2008) Metaproteomics provides functional insight into activated sludge wastewater treatment. PLoS One 3(3):e1778

    Article  PubMed  PubMed Central  Google Scholar 

  8. Daviss B (2005) Growing pains for metabolomics. Scientist 19(8):25–28

    Google Scholar 

  9. Ma Q, Zhou J, Zhang WW, Meng XX, Sun JW, Yuan YJ (2011) Integrated proteomic and metabolomic analysis of an artificial microbial community for two-step production of vitamin C. PLoS One 6(10):e26108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ye C, Xu N, Dong C, Ye Y, Zou X, Chen X, Guo F, Liu L (2017) IMGMD: a platform for the integration and standardisation of In silico Microbial Genome-scale metabolic models. Sci Rep-UK 7(1):727

    Article  Google Scholar 

  11. McCloskey D, Palsson BØ, Feist AM (2013) Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli. Mol Syst Biol 9(1):661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Oberhardt MA, Palsson BØ, Papin JA (2009) Applications of genome-scale metabolic reconstructions. Mol Syst Biol 5(1):320

    PubMed  PubMed Central  Google Scholar 

  13. Durot M, Bourguignon PY, Schachter V (2009) Genome-scale models of bacterial metabolism: reconstruction and applications. FEMS Microbiol Rev 33(1):164–190

    Article  CAS  PubMed  Google Scholar 

  14. Ranganathan S, Tee TW, Chowdhury A, Zomorrodi AR, Yoon JM, Fu Y, Shanks JV, Maranas CD (2012) An integrated computational and experimental study for overproducing fatty acids in Escherichia coli. Metab Eng 14(6):687–704

    Article  CAS  PubMed  Google Scholar 

  15. Nakahigashi K, Toya Y, Ishii N, Soga T, Hasegawa M, Watanabe H, Takai Y, Honma M, Mori H, Tomita M (2009) Systematic phenome analysis of Escherichia coli multiple‐knockout mutants reveals hidden reactions in central carbon metabolism. Mol Syst Biol 5(1):306

    PubMed  PubMed Central  Google Scholar 

  16. Fong SS, Palsson BO (2004) Metabolic gene-deletion strains of Escherichia coli evolve to computationally predicted growth phenotypes. Nat Genet 36(10):1056–1058

    Article  CAS  PubMed  Google Scholar 

  17. Ibarra RU, Edwards JS, Palsson BO (2002) Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature 420(6912):186–189

    Article  CAS  PubMed  Google Scholar 

  18. Schuetz R, Kuepfer L, Sauer U (2007) Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol Syst Biol 3:119

    Article  PubMed  PubMed Central  Google Scholar 

  19. Selvarasu S, Ow DSW, Lee SY, Lee MM, Oh SKW, Karimi IA, Lee DY (2009) Characterizing Escherichia coli DH5 alpha Growth and Metabolism in a complex medium using genome- scale flux analysis. Biotechnol Bioeng 102(3):923–934

    Article  CAS  PubMed  Google Scholar 

  20. Segre D, Vitkup D, Church GM (2002) Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci U S A 99(23):15112–15117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nishikawa T, Gulbahce N, Motter AE (2008) Spontaneous reaction silencing in metabolic optimization. PLoS Comput Biol 4(12):e1000236

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ghim CM, Goh KI, Kahng B (2005) Lethality and synthetic lethality in the genome-wide metabolic network of Escherichia coli. J Theor Biol 237(4):401–411

    Article  CAS  PubMed  Google Scholar 

  23. Motter AE, Gulbahce N, Almaas E, Barabasi AL (2008) Predicting synthetic rescues in metabolic networks. Mol Syst Biol 4:168

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kim DH, Motter AE (2009) Slave nodes and the controllability of metabolic networks. New J Phys 11:113047

    Article  Google Scholar 

  25. Pal C, Papp B, Lercher MJ, Csermely P, Oliver SG, Hurst LD (2006) Chance and necessity in the evolution of minimal metabolic networks. Nature 440(7084):667–670

    Article  CAS  PubMed  Google Scholar 

  26. Yizhak K, Tuller T, Papp B, Ruppin E (2011) Metabolic modeling of endosymbiont genome reduction on a temporal scale. Mol Syst Biol 7:479

    Article  PubMed  PubMed Central  Google Scholar 

  27. Notebaart RA, Kensche PR, Huynen MA, Dutilh BE (2009) Asymmetric relationships between proteins shape genome evolution. Genome Biol 10(2):R19

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pal C, Papp B, Lercher MJ (2005) Adaptive evolution of bacterial metabolic networks by horizontal gene transfer. Nat Genet 37(12):1372–1375

    Article  CAS  PubMed  Google Scholar 

  29. Pal C, Papp B, Lercher MJ (2005) Horizontal gene transfer depends on gene content of the host. Bioinformatics 21:222–223

    Article  Google Scholar 

  30. Ye C, Zou W, Xu N, Liu L (2014) Metabolic model reconstruction and analysis of an artificial microbial ecosystem for vitamin C production. J Biotechnol 182–183:61–67

    Article  PubMed  Google Scholar 

  31. Stolyar S, Van Dien S, Hillesland KL, Pinel N, Lie TJ, Leigh JA, Stahl DA (2007) Metabolic modeling of a mutualistic microbial community. Mol Syst Biol 3:92

    Article  PubMed  PubMed Central  Google Scholar 

  32. Biggs MB, Medlock GL, Kolling GL, Papin JA (2015) Metabolic network modeling of microbial communities. Wiley Interdiscip Rev Syst Biol Med 7(5):317–334

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhuang K, Izallalen M, Mouser P, Richter H, Risso C, Mahadevan R, Lovley DR (2010) Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments. ISME J 5(2):305–316

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bordbar A, Lewis NE, Schellenberger J, Palsson BØ, Jamshidi N (2010) Insight into human alveolar macrophage and M. tuberculosis interactions via metabolic reconstructions. Mol Syst Biol 6(1):422

    PubMed  PubMed Central  Google Scholar 

  35. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M (2014) The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 42(D1):D206–D214

    Article  CAS  PubMed  Google Scholar 

  36. Agren R, Liu LM, Shoaie S, Vongsangnak W, Nookaew I, Nielsen J (2013) The RAVEN toolbox and its use for generating a genome-scale metabolic model for Penicillium chrysogenum. PLoS Comput Biol 9(3):e1002980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schellenberger J, Que R, Fleming RM, Thiele I, Orth JD, Feist AM, Zielinski DC, Bordbar A, Lewis NE, Rahmanian S (2011) Quantitative prediction of cellular metabolism with constraint- based models: the COBRA Toolbox v2. 0. Nat Protoc 6(9):1290–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Swainston N, Smallbone K, Mendes P, Kell D, Paton N (2011) The SuBliMinaL toolbox: automating steps in the reconstruction of metabolic networks. J Integr Bioinform 8(2):186–202

    Article  PubMed  Google Scholar 

  39. Ravikrishnan A, Raman K (2015) Critical assessment of genome-scale metabolic networks: the need for a unified standard. Brief Bioinform 16(6):1057–1068

    Article  PubMed  Google Scholar 

  40. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M (2016) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44(D1):D457–D462

    Article  CAS  PubMed  Google Scholar 

  41. Chang A, Schomburg I, Placzek S, Jeske L, Ulbrich M, Xiao M, Sensen CW, Schomburg D (2014) BRENDA in 2015: exciting developments in its 25th year of existence. Nucleic Acids Res 43(D1):D439–D446

    Article  PubMed  PubMed Central  Google Scholar 

  42. Saier MH, Reddy VS, Tsu BV, Ahmed MS, Li C, Moreno-Hagelsieb G (2015) The transporter classification database (TCDB): recent advances. Nucleic Acids Res 44(D1):D372–D379

    Article  PubMed  PubMed Central  Google Scholar 

  43. Caspi R, Billington R, Ferrer L, Foerster H, Fulcher CA, Keseler IM, Kothari A, Krummenacker M, Latendresse M, Mueller LA (2016) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 44(D1):D471–D480

    Article  CAS  PubMed  Google Scholar 

  44. Keseler IM, Mackie A, Peralta-Gil M, Santos-Zavaleta A, Gama-Castro S, Bonavides-Martínez C, Fulcher C, Huerta AM, Kothari A, Krummenacker M (2013) EcoCyc: fusing model organism databases with systems biology. Nucleic Acids Res 41(D1):D605–D612

    Article  CAS  PubMed  Google Scholar 

  45. Sheppard TK, Hitz BC, Engel SR, Song G, Balakrishnan R, Binkley G, Costanzo MC, Dalusag KS, Demeter J, Hellerstedt ST (2015) The Saccharomyces genome database variant viewer. Nucleic Acids Res 44(D1):D698–D702

    Article  PubMed  PubMed Central  Google Scholar 

  46. Nancy YY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, Dao P, Sahinalp SC, Ester M, Foster LJ (2010) PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26(13):1608–1615

    Article  Google Scholar 

  47. Yu CS, Chen YC, Lu CH, Hwang JK (2006) Prediction of protein subcellular localization. Proteins 64(3):643–651

    Article  CAS  PubMed  Google Scholar 

  48. Thiele I, Palsson BØ (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 5(1):93–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. King ZA, Lu J, Drager A, Miller P, Federowicz S, Lerman JA, Ebrahim A, Palsson BO, Lewis NE (2016) BiGG Models: a platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Res 44(D1):D515–D522

    Article  CAS  PubMed  Google Scholar 

  50. Stein L (2001) Genome annotation: from sequence to biology. Nat Rev Genet 2(7):493–503

    Article  CAS  PubMed  Google Scholar 

  51. Yandell M, Ence D (2012) A beginner's guide to eukaryotic genome annotation. Nat Rev Genet 13(5):329–342

    Article  CAS  PubMed  Google Scholar 

  52. Stothard P, Wishart DS (2006) Automated bacterial genome analysis and annotation. Curr Opin Microbiol 9(5):505–510

    Article  CAS  PubMed  Google Scholar 

  53. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35(Web Server):W182–W185

    Article  PubMed  PubMed Central  Google Scholar 

  54. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9(1):75–89

    Article  PubMed  PubMed Central  Google Scholar 

  55. Devoid S, Overbeek R, DeJongh M, Vonstein V, Best AA, Henry C (2013) Automated genome annotation and metabolic model reconstruction in the SEED and Model SEED. Methods Mol Biol 985:17–45

    Article  CAS  PubMed  Google Scholar 

  56. Kim TY, Sohn SB, Kim YB, Kim WJ, Lee SY (2012) Recent advances in reconstruction and applications of genome-scale metabolic models. Curr Opin Biotechnol 23(4):617–623

    Article  CAS  PubMed  Google Scholar 

  57. Sacher O, Reitz M, Gasteiger J (2009) Investigations of enzyme-catalyzed reactions based on physicochemical descriptors applied to hydrolases. J Chem Inf Model 49(6):1525–1534

    Article  CAS  PubMed  Google Scholar 

  58. Horton P, Park K-J, Obayashi T, Fujita N, Harada H, Adams-Collier C, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35(suppl 2):W585–W587

    Article  PubMed  PubMed Central  Google Scholar 

  59. CS Y, Lin CJ, Hwang JK (2004) Predicting subcellular localization of proteins for Gram- negative bacteria by support vector machines based on n-peptide compositions. Protein Sci 13(5):1402–1406

    Article  Google Scholar 

  60. Moretti S, Martin O, Tran TV, Bridge A, Morgat A, Pagni M (2016) MetaNetX/MNXref - reconciliation of metabolites and biochemical reactions to bring together genome-scale metabolic networks. Nucleic Acids Res 44(D1):D523–D526

    Article  CAS  PubMed  Google Scholar 

  61. Zomorrodi AR, Maranas CD (2012) OptCom: a multi-level optimization framework for the metabolic modeling and analysis of microbial communities. PLoS Comput Biol 8(2):e1002363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zomorrodi AR, Islam MM, Maranas CD (2014) d-OptCom: dynamic multi-level and multi- objective metabolic modeling of microbial communities. ACS Synth Biol 3(4):247–257

    Article  CAS  PubMed  Google Scholar 

  63. Khandelwal RA, Olivier BG, Roling WFM, Teusink B, Bruggeman FJ (2013) Community flux balance analysis for microbial consortia at balanced growth. PLoS One 8(5):e64567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liming Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ye, C., Xu, N., Chen, X., Liu, L. (2018). Metabolic Model Reconstruction and Analysis of an Artificial Microbial Ecosystem. In: Fondi, M. (eds) Metabolic Network Reconstruction and Modeling. Methods in Molecular Biology, vol 1716. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7528-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7528-0_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7527-3

  • Online ISBN: 978-1-4939-7528-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics