Advertisement

Modeling Transient Focal Ischemic Stroke in Rodents by Intraluminal Filament Method of Middle Cerebral Artery Occlusion

  • Mary Susan Lopez
  • Raghu VemugantiEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1717)

Abstract

The middle cerebral artery occlusion (MCAO) model is widely used for inducing a focal cerebral ischemic insult (stroke) in rodents. Here, we describe a method for transient MCAO technique without craniotomy in both mice and rats. In our laboratory, this technique yields consistent secondary brain damage that evolves over a period of 3–7 days of reperfusion after transient MCAO. We also describe the methods for analyzing postischemic motor dysfunction and infarct volume in rodents subjected to transient MCAO.

Key words

Middle cerebral artery occlusion Focal cerebral ischemia Transcardiac perfusion Beam-walk test Rotarod test Sticker removal test Infarct volume 

References

  1. 1.
    Tamura A, Graham DI, McCulloch J, Teasdale GM (1981) Focal cerebral ischaemia in the rat: 1. Description of technique and early neuropathological consequences following middle cerebral artery occlusion. J Cereb Blood Flow Metab 1:53–60CrossRefPubMedGoogle Scholar
  2. 2.
    Koizumi J, Yoshida Y, Nakazawa T, Ooneda G (1986) Experimental studies of ischemic brain edema 1. A new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area. Jpn J Stroke 8:1–8CrossRefGoogle Scholar
  3. 3.
    Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20:84–91CrossRefPubMedGoogle Scholar
  4. 4.
    Rousselet E, Kriz J, Seidah NG (2012) Mouse model of intraluminal MCAO: cerebral infarct evaluation by Cresyl violet staining. J Vis Exp 69Google Scholar
  5. 5.
    Tureyen K, Vemuganti R, Sailor KA, Dempsey RJ (2005) Ideal suture diameter is critical for consistent middle cerebral artery occlusion in mice. Neurosurgery 56:196–200CrossRefPubMedGoogle Scholar
  6. 6.
    Belayev L, Alonso OF, Busto R, Zhao W, Ginsberg MD (1996) Middle cerebral artery occlusion in the rat by intraluminal suture. Neurological and pathological evaluation of an improved model. Stroke 9:1616–1622CrossRefGoogle Scholar
  7. 7.
    Joshi CN, Jain SK, Murthy PSR (2004) An optimized triphenyltetrazolium chloride method for identification of cerebral infarcts. Brain Res Protocol 13:11–17CrossRefGoogle Scholar
  8. 8.
    Nakka VP, Lang BT, Lenschow DJ, Zhang DE, Dempsey RJ, Vemuganti R (2011) Increased cerebral IGSylation after focal ischemia is neuroprotective. J Cereb Blood Flow Metab 31:2375–2384CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bouet V, Boulouard M, Toutain J, Divoux D, Bernaudin M, Schumann-Bard P, Freret T (2009) The adhesive removal test: a sensitive method to assess sensorimotor deficits in mice. Nat Protoc 4:1560–1564CrossRefPubMedGoogle Scholar
  10. 10.
    Rosen GD, Harry JD (1990) Brain volume estimation from serial section measurements: a comparison of methodologies. J Neurosci Methods 35:115–124CrossRefPubMedGoogle Scholar
  11. 11.
    Uylings HBM, van Eden CG, Hofman MA (1986) Morphometry of size/volume variables and comparison of their bivariate relations in the nervous system under different conditions. J Neurosci Methods 18:19–37CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  1. 1.Department of NeurosurgeryUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations