Skip to main content

In Vivo Electroporation of Developing Mouse Retina

  • Protocol
  • First Online:
Retinal Gene Therapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1715))

Abstract

In vivo electroporation enables the transformation of retinal tissue with engineered DNA plasmids, facilitating the selective expression of desired gene products. This method achieves plasmid transfer via the application of an external electrical field, which both generates a transient increase in the permeability of cell plasma membranes, and promotes the incorporation of DNA plasmids by electrophoretic transfer through the permeabilized membranes. Here we describe a method for the preparation, injection, and electroporation of DNA plasmids into neonatal mouse retinal tissue. This method can be utilized to perform gain of function or loss of function studies in the mouse. Experimental design is limited only by construct availability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Matsuda T, Cepko CL (2004) Electroporation and RNA interference in the rodent retina in vivo and in vitro. Proc Natl Acad Sci U S A 101:16–22. https://doi.org/10.1073/pnas.2235688100

    Article  CAS  PubMed  Google Scholar 

  2. Matsuda T, Cepko CL (2007) Controlled expression of transgenes introduced by in vivo electroporation. Proc Natl Acad Sci U S A 104:1027–1032. 0610155104 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Onishi A, Peng GH, Hsu C et al (2009) Pias3-dependent SUMOylation directs rod photoreceptor development. Neuron 61:234–246. https://doi.org/10.1016/j.neuron.2008.12.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Onishi A, Peng GH, Poth EM et al (2010) The orphan nuclear hormone receptor ERRbeta controls rod photoreceptor survival. Proc Natl Acad Sci U S A 107:11579–11584. https://doi.org/10.1073/pnas.1000102107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Onishi A, Peng GH, Chen S et al (2010) Pias3-dependent SUMOylation controls mammalian cone photoreceptor differentiation. Nat Neurosci 13:1059–1065. https://doi.org/10.1038/nn.2618

  6. de Melo J, Peng GH, Chen S et al (2011) The Spalt family transcription factor Sall3 regulates the development of cone photoreceptors and retinal horizontal interneurons. Development 138:2325–2336. https://doi.org/10.1242/dev.061846

    Article  PubMed  PubMed Central  Google Scholar 

  7. de Melo J, Blackshaw S (2011) In vivo electroporation of developing mouse retina. J Vis Exp (52):pii: 2847. https://doi.org/10.3791/2847

  8. de Melo J, Zibetti C, Clark BS et al (2016) Lhx2 is an essential factor for retinal gliogenesis and notch signaling. J Neurosci 36:2391–2405. https://doi.org/10.1523/JNEUROSCI.3145-15.2016

    Article  PubMed  PubMed Central  Google Scholar 

  9. de Melo J, Clark BS, Blackshaw S (2016) Multiple intrinsic factors act in concert with Lhx2 to direct retinal gliogenesis. Sci Rep 6:32757. https://doi.org/10.1038/srep32757

    Article  PubMed  PubMed Central  Google Scholar 

  10. Neumann E, Rosenheck K (1972) Permeability changes induced by electric impulses in vesicular membranes. J Membr Biol 10:279–290

    Article  CAS  PubMed  Google Scholar 

  11. Turnbull RJ (1973) Letter: an alternate explanation for the permeability changes induced by electrical impulses in vesicular membranes. J Membr Biol 14:193–196

    Article  CAS  PubMed  Google Scholar 

  12. Zimmermann U, Schulz J, Pilwat G (1973) Transcellular ion flow in Escherichia coli B and electrical sizing of bacterias. Biophys J 13:1005–1013. S0006-3495(73)86041-2 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kinosita K, Tsong TY (1977) Voltage-induced pore formation and hemolysis of human erythrocytes. Biochim Biophys Acta 471:227–242. 0005-2736(77)90252-8 [pii]

    Article  CAS  PubMed  Google Scholar 

  14. Neumann E, Schaefer-Ridder M, Wang Y et al (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1:841–845

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Swartz M, Eberhart J, Mastick GS et al (2001) Sparking new frontiers: using in vivo electroporation for genetic manipulations. Dev Biol 233:13–21. https://doi.org/10.1006/dbio.2001.0181

    Article  CAS  PubMed  Google Scholar 

  16. MacLaren RE, Bennett J, Schwartz SD (2016) Gene therapy and stem cell transplantation in retinal disease: the new frontier. Ophthalmology 123(10S):S106. S0161-6420(16)30509-7 [pii]

    Google Scholar 

  17. Latella MC, Di Salvo MT, Cocchiarella F et al (2016) In vivo editing of the human mutant rhodopsin gene by electroporation of plasmid-based CRISPR/Cas9 in the mouse retina. Mol Ther Nucleic Acids 5:e389. https://doi.org/10.1038/mtna.2016.92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seth Blackshaw .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

de Melo, J., Blackshaw, S. (2018). In Vivo Electroporation of Developing Mouse Retina. In: Boon, C., Wijnholds, J. (eds) Retinal Gene Therapy. Methods in Molecular Biology, vol 1715. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7522-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7522-8_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7521-1

  • Online ISBN: 978-1-4939-7522-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics