Skip to main content

AAV Gene Augmentation Therapy for CRB1-Associated Retinitis Pigmentosa

  • Protocol
  • First Online:
Retinal Gene Therapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1715))

Abstract

Mutations in the CRB1 gene account for around 10,000 persons with Leber congenital amaurosis (LCA) and 70,000 persons with retinitis pigmentosa (RP) worldwide. Therefore, the CRB1 gene is a key target in the fight against blindness. A proof-of-concept for an adeno-associated virus (AAV)-mediated CRB2 gene augmentation therapy for CRB1-RP was recently described. Preclinical studies using animal models such as knockout or mutant mice are crucial to obtain such proof-of-concept. In this chapter we describe a technique to deliver AAV vectors, into the murine retinas, via the subretinal route. We also present protocols to detect expression of the therapeutic protein by fluorescence immunohistochemistry and to perform histological studies using ultra-thin sections stained with toluidine blue. These techniques in combination with electroretinography and visual behavior tests are in principle sufficient to obtain proof-of-concept for new gene therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Glybera (2012) http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/002145/human_med_001480.jsp&mid=WC0b01ac058001d124. Accessed 29 Nov 2012

  2. Bainbridge JW, Smith AJ, Barker SS et al (2008) Effect of gene therapy on visual function in leber’s congenital amaurosis. N Engl J Med 358:2231–2239

    Article  CAS  PubMed  Google Scholar 

  3. MacLaren RE, Groppe M, Barnard AR et al (2014) Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial. Lancet 383:1129–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Michalakis S, Mühlfriedel R, Tanimoto N et al (2010) Restoration of cone vision in the CNGA3−/− mouse model of congenital complete lack of cone photoreceptor function. Mol Ther 18:2057–2063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sanofi-Genzyme. Safety and Tolerability Study of AAV2- sFLT01 in Patients With Neovascular Age-Related Macular Degeneration (AMD). http://clinicaltrials.gov/ct2/show/NCT01024998

    Google Scholar 

  6. Feuer WJ, Schiffman JC, Davis JL et al (2016) Gene therapy for leber hereditary optic neuropathy: initial results. Ophthalmology 123:558–570

    Article  PubMed  Google Scholar 

  7. Conlon TJ, Deng WT, Erger K et al (2013) Preclinical potency and safety studies of an AAV2-mediated gene therapy vector for the treatment of MERTK associated retinitis pigmentosa. Hum Gene Ther Clin Dev 24:23–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Alves CH, Pellissier LP, Wijnholds J (2014) The CRB1 and adherens junction complex proteins in retinal development and maintenance. Progr Ret Eye Res 40:35–52

    Article  CAS  Google Scholar 

  9. Tsang SH, Burke T, Oll M et al (2014) Whole exome sequencing identifies CRB1 defect in an unusual maculopathy phenotype. Ophthalmology 121:1773–1782

    Article  PubMed  PubMed Central  Google Scholar 

  10. Tepass U, Theres C, Knust E (1990) crumbs encodes an EGF-like protein expressed on apical membranes of Drosophila epithelial cells and required for organization of epithelia. Cell 61:787–799

    Article  CAS  PubMed  Google Scholar 

  11. Pellissier LP, Hoek RR, Vos RM et al (2014) Specific tools for targeting and expression in Müller glial cells. Mol Ther Methods Clin Dev 1:14009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pellissier LP, Quinn PM, Alves CH et al (2015) Gene therapy into photoreceptors and Müller glial cells restores retinal structure and function in CRB1 retinitis pigmentosa mouse models. Hum Mol Genet 24:1–15

    Article  Google Scholar 

  13. Alves CH, Bossers K, Vos RM et al (2013) Microarray and morphological analysis of early postnatal CRB2 mutant retinas on a pure C57BL/6J genetic background. PLoS One 8:1–17

    Google Scholar 

  14. Alves CH, Pellissier LP, Vos RM et al (2014) Targeted ablation of Crb2 in photoreceptor cells induces retinitis pigmentosa. Hum Mol Genet 23:3384–3401

    Article  CAS  PubMed  Google Scholar 

  15. Alves CH, Sanz Sanz A, Park B et al (2013) Loss of CRB2 in the mouse retina mimics human retinitis pigmentosa due to mutations in the CRB1 gene. Hum Mol Genet 22:35–50

    Article  CAS  PubMed  Google Scholar 

  16. Pellissier LP, Alves CH, Quinn PM et al (2013) Targeted ablation of Crb1 and Crb2 in retinal progenitor cells mimics leber congenital amaurosis. PLoS Genet 9:e1003976

    Article  PubMed  PubMed Central  Google Scholar 

  17. van de Pavert SA, Kantardzhieva A, Malysheva A et al (2004) Crumbs homologue 1 is required for maintenance of photoreceptor cell polarization and adhesion during light exposure. J Cell Sci 117:4169–4177

    Article  PubMed  Google Scholar 

  18. Pellissier LP, Lundvig DM, Tanimoto N et al (2014) CRB2 acts as a modifying factor of CRB1-related retinal dystrophies in mice. Hum Mol Genet 23:3759–3771

    Article  CAS  PubMed  Google Scholar 

  19. van Rossum AG, Aartsen WM, Meuleman J et al (2006) Pals1/Mpp5 is required for correct localization of Crb1 at the subapical region in polarized Müller glia cells. Hum Mol Genet 15:2659–2672

    Article  PubMed  Google Scholar 

  20. Klimczak RR, Koerber JT, Dalkara D et al (2009) A novel adeno-associated viral variant for efficient and selective intravitreal transduction of rat Müller cells. PLoS One 4:e7467

    Article  PubMed  PubMed Central  Google Scholar 

  21. Dalkara D, Byrne LC, Lee T et al (2012) Enhanced gene delivery to the neonatal retina through systemic administration of tyrosine-mutated AAV9. Gene Ther 19:176–181

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Dr. Lucie P. Pellissier and Rogier M. Vos are acknowledged for providing AAV stocks. This work was financially supported by the Foundation Fighting Blindness USA project TA-GT-0715-0665-LUMC and ZonMw project 43200004 (to JW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Wijnholds .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Alves, C.H., Wijnholds, J. (2018). AAV Gene Augmentation Therapy for CRB1-Associated Retinitis Pigmentosa. In: Boon, C., Wijnholds, J. (eds) Retinal Gene Therapy. Methods in Molecular Biology, vol 1715. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7522-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7522-8_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7521-1

  • Online ISBN: 978-1-4939-7522-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics