Skip to main content

ClickSeq: Replacing Fragmentation and Enzymatic Ligation with Click-Chemistry to Prevent Sequence Chimeras

  • Protocol
  • First Online:
Next Generation Sequencing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1712))

Abstract

We recently reported a fragmentation-free method for the synthesis of Next-Generation Sequencing libraries called “ClickSeq” that uses biorthogonal click-chemistry in place of enzymes for the ligation of sequencing adaptors. We found that this approach dramatically reduces artifactual chimera formation, allowing the study of rare recombination events that include viral replication intermediates and defective-interfering viral RNAs. ClickSeq illustrates how robust, bio-orthogonal chemistry can be harnessed in vitro to capture and dissect complex biological processes. Here, we describe an updated protocol for the synthesis of “ClickSeq” libraries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Birts CN et al (2014) Transcription of click-linked DNA in human cells. Angew Chem Int Ed Engl 53(9):2362–2365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen X, El-Sagheer AH, Brown T (2014) Reverse transcription through a bulky triazole linkage in RNA: implications for RNA sequencing. Chem Commun (Camb) 50(57):7597–7600

    Article  CAS  Google Scholar 

  3. Dallmann A et al (2011) Structure and dynamics of triazole-linked DNA: biocompatibility explained. Chemistry 17(52):14714–14717

    Article  CAS  PubMed  Google Scholar 

  4. El-Sagheer AH, Sanzone AP, Gao R, Tavassoli A, Brown T (2011) Biocompatible artificial DNA linker that is read through by DNA polymerases and is functional in Escherichia Coli. Proc Natl Acad Sci U S A 108(28):11338–11343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. el-Sagheer AH, Brown T (2011) Efficient RNA synthesis by in vitro transcription of a triazole-modified DNA template. Chem Commun (Camb) 47(44):12057–12058

    Article  CAS  Google Scholar 

  6. Qiu J, El-Sagheer AH, Brown T (2013) Solid phase click ligation for the synthesis of very long oligonucleotides. Chem Commun (Camb) 49(62):6959–6961

    Article  CAS  Google Scholar 

  7. Sanzone AP, El-Sagheer AH, Brown T, Tavassoli A (2012) Assessing the biocompatibility of click-linked DNA in Escherichia Coli. Nucleic Acids Res 40(20):10567–10575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Isobe H, Fujino T, Yamazaki N, Guillot-Nieckowski M, Nakamura E (2008) Triazole-linked analogue of deoxyribonucleic acid ((TL)DNA): design, synthesis, and double-strand formation with natural DNA. Org Lett 10(17):3729–3732

    Article  CAS  PubMed  Google Scholar 

  9. Isobe H, Fujino T (2014) Triazole-linked analogues of DNA and RNA ((TL)DNA and (TL)RNA): synthesis and functions. Chem Rec 14(1):41–51

    Article  CAS  PubMed  Google Scholar 

  10. Fujino T et al (2011) Triazole-linked DNA as a primer surrogate in the synthesis of first-strand cDNA. Chem Asian J 6(11):2956–2960

    Article  CAS  PubMed  Google Scholar 

  11. Shivalingam A, Tyburn AE, El-Sagheer AH, Brown T (2017) Molecular requirements of high-fidelity replication-competent DNA backbones for orthogonal chemical ligation. J Am Chem Soc 139(4):1575–1583

    Article  CAS  PubMed  Google Scholar 

  12. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed Engl 40(11):2004–2021

    Article  CAS  PubMed  Google Scholar 

  13. Baskin JM et al (2007) Copper-free click chemistry for dynamic in vivo imaging. Proc Natl Acad Sci U S A 104(43):16793–16797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. El-Sagheer AH, Brown T (2009) Synthesis and polymerase chain reaction amplification of DNA strands containing an unnatural triazole linkage. J Am Chem Soc 131(11):3958–3964

    Article  CAS  PubMed  Google Scholar 

  15. Routh A, Head SR, Ordoukhanian P, Johnson JE (2015) ClickSeq: fragmentation-free next-generation sequencing via click ligation of adaptors to stochastically terminated 3′-Azido cDNAs. J Mol Biol 427(16):2610–2616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gorzer I, Guelly C, Trajanoski S, Puchhammer-Stockl E (2010) The impact of PCR-generated recombination on diversity estimation of mixed viral populations by deep sequencing. J Virol Methods 169(1):248–252

    Article  PubMed  Google Scholar 

  17. Meyerhans A, Vartanian JP, Wain-Hobson S (1990) DNA recombination during PCR. Nucleic Acids Res 18(7):1687–1691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Routh A, Ordoukhanian P, Johnson JE (2012) Nucleotide-resolution profiling of RNA recombination in the encapsidated genome of a eukaryotic RNA virus by next-generation sequencing. J Mol Biol 424(5):257–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Routh A, Johnson JE (2014) Discovery of functional genomic motifs in viruses with ViReMa-a virus recombination mapper-for analysis of next-generation sequencing data. Nucleic Acids Res 42(2):e11

    Article  CAS  PubMed  Google Scholar 

  20. Jaworski E, Routh A (2017) Parallel ClickSeq and Nanopore sequencing elucidates the rapid evolution of defective-interfering RNAs in flock house virus. PLoS Pathog 13(5):e1006365

    Article  PubMed  PubMed Central  Google Scholar 

  21. Routh A et al (2017) Poly(a)-ClickSeq: click-chemistry for next-generation 3-end sequencing without RNA enrichment or fragmentation. Nucleic Acids Res 45(12):e112

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hong V, Presolski SI, Ma C, Finn MG (2009) Analysis and optimization of copper-catalyzed azide-alkyne cycloaddition for bioconjugation. Angew Chem Int Ed Engl 48(52):9879–9883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Abel GR, Calabrese ZA, Ayco J, Hein JE, Ye T (2016) Measuring and suppressing the oxidative damage to DNA during Cu(I)-catalyzed azide-alkyne cycloaddition. Bioconjug Chem 27(3):698–704

    Article  CAS  PubMed  Google Scholar 

  24. Litovchick A et al (2015) Encoded library synthesis using chemical ligation and the discovery of sEH inhibitors from a 334-million member library. Sci Rep 5:10916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by UTMB start-up funds and a University of Texas System Rising STARs Award to A.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Routh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jaworski, E., Routh, A. (2018). ClickSeq: Replacing Fragmentation and Enzymatic Ligation with Click-Chemistry to Prevent Sequence Chimeras. In: Head, S., Ordoukhanian, P., Salomon, D. (eds) Next Generation Sequencing. Methods in Molecular Biology, vol 1712. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7514-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7514-3_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7512-9

  • Online ISBN: 978-1-4939-7514-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics