An Integrated Polysome Profiling and Ribosome Profiling Method to Investigate In Vivo Translatome

  • Hyun Yong Jin
  • Changchun XiaoEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1712)


Recent advances in global translatome analysis technologies enable us to understand how translational regulation of gene expression modulates cellular functions. In this chapter, we present an integrated method to measure various aspects of translatome by polysome profiling and ribosome profiling using purified B cells. We standardized our protocols to directly compare the results from these two approaches. Parallel assessment of translatome with these two approaches can generate a comprehensive picture on how translational regulation determines protein output.

Key words

Translatome Ribosome profiling Ribo-seq Polysome profiling Translational regulation of gene expression 



We thank Jovan Shepherd for critical reading of manuscript. C.X. is a Pew Scholar in Biomedical Sciences. This study is supported by the PEW Charitable Trusts, Cancer Research Institute, National Institute of Health (R01AI087634, R01AI089854, RC1CA146299, R56AI110403, and R01AI121155 to C.X.).


  1. 1.
    Arava Y, Wang Y, Storey JD, Liu CL, Brown PO, Herschlag D (2003) Genome-wide analysis of mRNA translation profiles in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 100(7):3889–3894. [pii] 0635171100CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Lackner DH, Beilharz TH, Marguerat S, Mata J, Watt S, Schubert F, Preiss T, Bahler J (2007) A network of multiple regulatory layers shapes gene expression in fission yeast. Mol Cell 26(1):145–155. [pii] S1097-2765(07)00147-5CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Steitz JA (1969) Polypeptide chain initiation: nucleotide sequences of the three ribosomal binding sites in bacteriophage R17 RNA. Nature 224(5223):957–964CrossRefPubMedGoogle Scholar
  4. 4.
    Ingolia NT, Ghaemmaghami S, Newman JRS, Weissman JS (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324(5924):218–223. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ingolia NT (2014) Ribosome profiling: new views of translation, from single codons to genome scale. Nat Rev Genet 15(3):205–213. [pii] nrg3645CrossRefPubMedGoogle Scholar
  6. 6.
    Nedialkova DD, Leidel SA (2015) Optimization of codon translation rates via tRNA modifications maintains proteome integrity. Cell 161(7):1606–1618. [pii] S0092-8674(15)00571-1CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lareau LF, Hite DH, Hogan GJ, Brown PO (2014) Distinct stages of the translation elongation cycle revealed by sequencing ribosome-protected mRNA fragments. elife 3:e01257. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Guydosh NR, Green R (2014) Dom34 rescues ribosomes in 3′ untranslated regions. Cell 156(5):950–962. [pii] S0092-8674(14)00162-7CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Payne SH (2015) The utility of protein and mRNA correlation. Trends Biochem Sci 40(1):1–3. [pii] S0968-0004(14)00202-3CrossRefPubMedGoogle Scholar
  10. 10.
    Schott J, Reitter S, Philipp J, Haneke K, Schafer H, Stoecklin G (2014) Translational regulation of specific mRNAs controls feedback inhibition and survival during macrophage activation. PLoS Genet 10(6):e1004368. Artn E1004368CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Schafer S, Adami E, Heinig M, Rodrigues KE, Kreuchwig F, Silhavy J, van Heesch S, Simaite D, Rajewsky N, Cuppen E, Pravenec M, Vingron M, Cook SA, Hubner N (2015) Translational regulation shapes the molecular landscape of complex disease phenotypes. Nat Commun 6:7200. [pii] ncomms8200CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Liu BT, Han Y, Qian SB (2013) Cotranslational response to proteotoxic stress by elongation pausing of ribosomes. Mol Cell 49(3):453–463. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Jin HY, Oda H, Chen P, Yang C, Zhou X, Kang SG, Valentine E, Kefauver JM, Liao L, Zhang Y, Gonzalez-Martin A, Shepherd J, Morgan GJ, Mondala TS, Head SR, Kim P-H, Xiao N, Fu G, Liu W-H, Han J, Williamson JR, Xiao C (2017) Differential Sensitivity of Target Genes to Translational Repression by miR-17~92. PLoS Genet 13 (2):e1006623. doi:
  14. 14.
    Jin HY, Gonzalez-Martin A, Miletic A, Lai M, Knight S, Sabouri-Ghomi M, Head SR, Macauley MS, Rickert R, Xiao C (2015) Transfection of microRNA mimics should be used with caution. Front Genet 6:340. PubMedPubMedCentralGoogle Scholar
  15. 15.
    Ingolia NT, Brar GA, Rouskin S, McGeachy AM, Weissman JS (2012) The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat Protoc 7(8):1534–1550. [pii] nprot.2012.086CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Jin HY, Oda H, Lai M, Skalsky RL, Bethel K, Shepherd J, Kang SG, Liu WH, Sabouri-Ghomi M, Cullen BR, Rajewsky K, Xiao C (2013) MicroRNA-17~92 plays a causative role in lymphomagenesis by coordinating multiple oncogenic pathways. EMBO J 32(17):2377–2391. [pii] emboj2013178CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Cho J, Yu NK, Choi JH, Sim SE, Kang SJ, Kwak C, Lee SW, Kim JI, Choi DI, Kim VN, Kaang BK (2015) Multiple repressive mechanisms in the hippocampus during memory formation. Science 350(6256):82–87. [pii] 350/6256/82CrossRefPubMedGoogle Scholar
  18. 18.
    Ingolia NT, Brar GA, Stern-Ginossar N, Harris MS, Talhouarne GJ, Jackson SE, Wills MR, Weissman JS (2014) Ribosome profiling reveals pervasive translation outside of annotated protein-coding genes. Cell Rep 8(5):1365–1379. [pii] S2211-1247(14)00629-9CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  1. 1.Department of Immunology and Microbial ScienceThe Scripps Research InstituteLa JollaUSA

Personalised recommendations