Skip to main content

Tagmentation-Based Library Preparation for Low DNA Input Whole Genome Bisulfite Sequencing

  • Protocol
  • First Online:
DNA Methylation Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1708))

Abstract

Aberrations of the DNA methylome contribute to onset and progression of diseases. Whole genome bisulfite sequencing (WGBS) is the only analytical method covering the complete methylome. Alternative methods requiring less DNA than WGBS analyze only a minor portion of the methylome and do not cover important regulatory features like enhancers and noncoding RNAs. In tagmentation-based WGBS (TWGBS), several DNA and time-consuming steps of the conventional WGBS library preparation are circumvented by the use of a hyperactive transposase, which simultaneously fragments DNA and appends sequencing adapters. TWGBS requires only nanogram amounts of DNA and, thus, is well suited to study precious biological specimens such as sorted cells or micro-dissected tissue samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Fazzari MJ, Greally JM (2004) Epigenomics: beyond CpG islands. Nat Rev Genet 5:446–455

    Article  CAS  PubMed  Google Scholar 

  2. Lister R, Pelizzola M, Dowen RH et al (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462:315–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Weichenhan D, Plass C (2013) The evolving epigenome. Hum Mol Genet 22:R1–R6

    Article  CAS  PubMed  Google Scholar 

  4. Gu H, Smith ZD, Bock C et al (2011) Preparation of reduced representation bisulfite sequencing libraries for genome-scale DNA methylation profiling. Nat Protoc 6:468–481

    Article  CAS  PubMed  Google Scholar 

  5. Meissner A, Gnirke A, Bell GW et al (2005) Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res 33:5868–5877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Khulan B, Thompson RF, Ye K et al (2006) Comparative isoschizomer profiling of cytosine methylation: the HELP assay. Genome Res 16:1046–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Oda M, Glass JL, Thompson RF et al (2009) High-resolution genome-wide cytosine methylation profiling with simultaneous copy number analysis and optimization for limited cell numbers. Nucleic Acids Res 37:3829–3839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. http://www.illumina.com/products/methylation_450_beadchip_kits.ilmn

  9. Mohn F, Weber M, Schubeler D et al (2009) Methylated DNA immunoprecipitation (MeDIP). Methods Mol Biol 507:55–64

    Article  CAS  PubMed  Google Scholar 

  10. Taiwo O, Wilson GA, Morris T et al (2012) Methylome analysis using MeDIP-seq with low DNA concentrations. Nat Protoc 7:617–636

    Article  CAS  PubMed  Google Scholar 

  11. Weber M, Davies JJ, Wittig D et al (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37:853–862

    Article  CAS  PubMed  Google Scholar 

  12. Brinkman AB, Simmer F, Ma K et al (2010) Whole-genome DNA methylation profiling using MethylCap-seq. Methods 52:232–236

    Article  CAS  PubMed  Google Scholar 

  13. Gebhard C, Schwarzfischer L, Pham TH et al (2006) Genome-wide profiling of CpG methylation identifies novel targets of aberrant hypermethylation in myeloid leukemia. Cancer Res 66:6118–6128

    Article  CAS  PubMed  Google Scholar 

  14. Sonnet M, Baer C, Rehli M et al (2013) Enrichment of methylated DNA by methyl-CpG immunoprecipitation. Methods Mol Biol 971:201–212

    Article  CAS  PubMed  Google Scholar 

  15. Seisenberger S, Andrews S, Krueger F et al (2012) The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol Cell 48:849–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Popp C, Dean W, Feng S et al (2010) Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature 463:1101–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kobayashi H, Sakurai T, Imai M et al (2012) Contribution of intragenic DNA methylation in mouse gametic DNA methylomes to establish oocyte-specific heritable marks. PLoS Genet 8:e1002440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Miura F, Enomoto Y, Dairiki R et al (2012) Amplification-free whole-genome bisulfite sequencing by post-bisulfite adaptor tagging. Nucleic Acids Res 40:e136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. http://www.nugeninc.com/nugen/index.cfm/products/cs/ngs/methyl-seq/

  20. http://www.zymoresearch.com/downloads/dl/file/id/628/d5455i.pdf

  21. Adey A, Shendure J (2012) Ultra-low-input, tagmentation-based whole-genome bisulfite sequencing. Genome Res 22:1139–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang Q, Gu L, Adey A et al (2013) Tagmentation-based whole-genome bisulfite sequencing. Nat Protoc 8:2022–2032

    Article  CAS  PubMed  Google Scholar 

  23. Adey A, Morrison HG, Asan et al (2010) Rapid, low-input, low-bias construction of shotgun fragment libraries by high-density in vitro transposition. Genome Biol 11:R119

    Google Scholar 

  24. Ito S, Shen L, Dai Q et al (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333:1300–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Johnson MD, Mueller M, Game L et al (2012) Single nucleotide analysis of cytosine methylation by whole-genome shotgun bisulfite sequencing. Curr Protoc Mol Biol 99:21.23

    Google Scholar 

  26. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Grunenwald HL, Caruccio N, Jendrisak J et al (2010) Transposon end compositions and methods for modifying nucleic acids. USA Patent US20100120098A1

    Google Scholar 

  28. Jager N, Schlesner M, Jones DT et al (2013) Hypermutation of the inactive X chromosome is a frequent event in cancer. Cell 155:567–581

    Article  PubMed  PubMed Central  Google Scholar 

  29. http://res.illumina.com/documents/products%5Ctechnotes%5Ctechnote_nextera_low_plex_pooling_guidelines.pdf

  30. Hansen KD, Langmead B, Irizarry RA (2012) BSmooth: from whole genome bisulfite sequencing reads to differentially methylated regions. Genome Biol 13:R83

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge excellent technical support by Marion Bähr, Monika Helf and helpful discussions with Daniel Lipka. We also acknowledge the excellent support from the sequencing core facility at the DKFZ, particularly from André Götze. Work in the Plass laboratory was supported by the Helmholtz Foundation and the German Federal Ministry of Education and Science in the program for medical genome research (FKZ: 01KU1001A). Q.W. obtained support by the Humboldt Research Fellowship for Postdoctoral Researchers. A.A. is funded by an NSF Graduate Research Fellowship.

Author Contributions: D.W., Q.W., A. A. and J.S. conceived the study. S.W., R.E. and C.P. contributed materials. D.W. did the experiments and analyzed data. D.W. and C.P. wrote the manuscript.

Competing financial interests: The authors declare no competing financial interests. A provisional patent application has been deposited for aspects of these methods (A.A., J.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Weichenhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Weichenhan, D. et al. (2018). Tagmentation-Based Library Preparation for Low DNA Input Whole Genome Bisulfite Sequencing. In: Tost, J. (eds) DNA Methylation Protocols. Methods in Molecular Biology, vol 1708. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7481-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7481-8_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7479-5

  • Online ISBN: 978-1-4939-7481-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics