Advertisement

A Guide to Illumina BeadChip Data Analysis

  • Michael C. Wu
  • Pei-Fen Kuan
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1708)

Abstract

The Illumina Infinium BeadChips are a powerful array-based platform for genome-wide DNA methylation profiling at approximately 485,000 (450K) and 850,000 (EPIC) CpG sites across the genome. The platform is used in many large-scale population-based epigenetic studies of complex diseases, environmental exposures, or other experimental conditions. This chapter provides an overview of the key steps in analyzing Illumina BeadChip data. We describe key preprocessing steps including data extraction and quality control as well as normalization strategies. We further present principles and guidelines for conducting association analysis at the individual CpG level as well as more sophisticated pathway-based association tests.

Key words

DNA methylation Epigenome-wide association studies Hypothesis testing Normalization Pathway analysis Quality control 

References

  1. 1.
    Razin A (1998) CpG methylation, chromatin structure and gene silencing-a three-way connection. EMBO J 17:4905–4908CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Razin A, Riggs AD (1980) DNA methylation and gene function. Science 210:604–610CrossRefPubMedGoogle Scholar
  3. 3.
    Ramsahoye BH, Biniszkiewicz D, Lyko F et al (2000) Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc Natl Acad Sci U S A 97:5237–5242CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bibikova M, Barnes B, Tsan C et al (2011) High density DNA methylation array with single CpG site resolution. Genomics 98:288–295CrossRefPubMedGoogle Scholar
  5. 5.
    Sandoval J, Heyn H, Moran S et al (2011) Validation of a DNA methylation microarray for 450,000 CpG sites in the human genome. Epigenetics 6:692–702CrossRefPubMedGoogle Scholar
  6. 6.
    Joubert BR, Haberg SE, Bell DA et al (2014) Maternal smoking and DNA methylation in newborns: in utero effect or epigenetic inheritance? Cancer Epidemiol Biomark Prev 23:1007–1017CrossRefGoogle Scholar
  7. 7.
    Joubert BR, Haberg SE, Nilsen RM et al (2012) 450K epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy. Environ Health Perspect 120:1425–1431CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Joubert BR, Felix JF, Yousefi P et al (2016) DNA methylation in newborns and maternal smoking in pregnancy: genome-wide consortium meta-analysis. Am J Hum Genet 98:680–696CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Heyn H, Carmona FJ, Gomez A et al (2013) DNA methylation profiling in breast cancer discordant identical twins identifies DOK7 as novel epigenetic biomarker. Carcinogenesis 34:102–108CrossRefPubMedGoogle Scholar
  10. 10.
    Shen J, Wang S, Zhang YJ et al (2013) Exploring genome-wide DNA methylation profiles altered in hepatocellular carcinoma using Infinium HumanMethylation 450 BeadChips. Epigenetics 8:34–43CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Heyn H, Li N, Ferreira HJ et al (2012) Distinct DNA methylomes of newborns and centenarians. Proc Natl Acad Sci U S A 109:10522–10527CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Liu Y, Aryee MJ, Padyukov L et al (2013) Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis. Nat Biotechnol 31:142–147CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Engel SM, Joubert BR, Wu MC et al (2014) Neonatal genome-wide methylation patterns in relation to birth weight in the Norwegian mother and child cohort. Am J Epidemiol 179:834–842CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Pidsley R, Zotenko E, Peters TJ et al (2016) Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biol 17:208CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    GenomeStudio® Methylation Module v1.8 User Guide (2011) Illumina Inc., San Diego, CA, USAGoogle Scholar
  16. 16.
    Smith ML, Baggerly KA, Bengtsson H et al (2013) Illuminaio: an open source IDAT parsing tool for Illumina microarrays. F1000Res 2:264PubMedPubMedCentralGoogle Scholar
  17. 17.
    R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  18. 18.
    Gentleman RC, Carey VJ, Bates DM et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hansen KD (2016) IlluminaHumanMethylation450kanno.ilmn12.hg19: annotation for Illumina’s 450k methylation arrays. R package version 0.6.0Google Scholar
  20. 20.
    Hansen KD (2016) IlluminaHumanMethylationEPICanno.ilm10b2.hg19: annotation for Illumina’s EPIC methylation arrays. R package version 0.6.0Google Scholar
  21. 21.
    Aryee MJ, Jaffe AE, Corrada-Bravo H et al (2014) Minfi: a flexible and comprehensive bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics 30:1363–1369CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Chen YA, Lemire M, Choufani S et al (2013) Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray. Epigenetics 8:203–209CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Siva N (2008) 1000 Genomes project. Nat Biotechnol 26:256PubMedGoogle Scholar
  24. 24.
    Zhou W, Laird PW, Shen H (2016) Comprehensive characterization, annotation and innovative use of Infinium DNA methylation BeadChip probes. Nucleic Acids Res 45(4):e22PubMedCentralGoogle Scholar
  25. 25.
    Maksimovic J, Gordon L, Oshlack A (2012) SWAN: subset-quantile within array normalization for illumina infinium HumanMethylation450 BeadChips. Genome Biol 13:R44CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Teschendorff AE, Marabita F, Lechner M et al (2013) A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics 29:189–196CrossRefPubMedGoogle Scholar
  27. 27.
    Touleimat N, Tost J (2012) Complete pipeline for Infinium((R)) human methylation 450K BeadChip data processing using subset quantile normalization for accurate DNA methylation estimation. Epigenomics 4:325–341CrossRefPubMedGoogle Scholar
  28. 28.
    Triche TJ Jr, Weisenberger DJ, Van Den Berg D et al (2013) Low-level processing of illumina infinium DNA methylation BeadArrays. Nucleic Acids Res 41:e90CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Marabita F, Almgren M, Lindholm ME et al (2013) An evaluation of analysis pipelines for DNA methylation profiling using the Illumina HumanMethylation450 BeadChip platform. Epigenetics 8:333–346CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Wu MC, Joubert BR, Kuan PF et al (2014) A systematic assessment of normalization approaches for the infinium 450K methylation platform. Epigenetics 9:318–329CrossRefPubMedGoogle Scholar
  31. 31.
    Dedeurwaerder S, Defrance M, Calonne E et al (2011) Evaluation of the Infinium methylation 450K technology. Epigenomics 3:771–784CrossRefPubMedGoogle Scholar
  32. 32.
    Pidsley R, Y Wong CC, Volta M et al (2013) A data-driven approach to preprocessing illumina 450K methylation array data. BMC Genomics 14:293CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Morris TJ, Butcher LM, Feber A et al (2014) ChAMP: 450k Chip analysis methylation pipeline. Bioinformatics 30:428–430CrossRefPubMedGoogle Scholar
  34. 34.
    Du P, Zhang X, Huang CC et al (2010) Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC Bioinformatics 11:587CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Methodol 57:289–300Google Scholar
  36. 36.
    Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 25:25–29CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Khatri P, Draghici S (2005) Ontological analysis of gene expression data: current tools, limitations, and open problems. Bioinformatics 21:3587–3595CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Goeman JJ, Buhlmann P (2007) Analyzing gene expression data in terms of gene sets: methodological issues. Bioinformatics 23:980–987CrossRefPubMedGoogle Scholar
  40. 40.
    Wu MC, Lin X (2009) Prior biological knowledge-based approaches for the analysis of genome-wide expression profiles using gene sets and pathways. Stat Methods Med Res 18:577–593CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102:15545–15550CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Tomfohr J, Lu J, Kepler TB (2005) Pathway level analysis of gene expression using singular value decomposition. BMC Bioinformatics 6:225CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Wu MC, Zhang L, Wang Z et al (2009) Sparse linear discriminant analysis for simultaneous testing for the significance of a gene set/pathway and gene selection. Bioinformatics 25:1145–1151CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Goeman JJ, van de Geer SA, de Kort F et al (2004) A global test for groups of genes: testing association with a clinical outcome. Bioinformatics 20:93–99CrossRefPubMedGoogle Scholar
  45. 45.
    Kwee LC, Liu D, Lin X et al (2008) A powerful and flexible multilocus association test for quantitative traits. Am J Hum Genet 82:386–397CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Liu D, Ghosh D, Lin X (2008) Estimation and testing for the effect of a genetic pathway on a disease outcome using logistic kernel machine regression via logistic mixed models. BMC Bioinformatics 9:292CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Liu D, Lin X, Ghosh D (2007) Semiparametric regression of multidimensional genetic pathway data: least-squares kernel machines and linear mixed models. Biometrics 63:1079–1088CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Wu MC, Kraft P, Epstein MP et al (2010) Powerful SNP-set analysis for case-control genome-wide association studies. Am J Hum Genet 86:929–942CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Baggerly KA, Morris JS, Edmonson SR et al (2005) Signal in noise: evaluating reported reproducibility of serum proteomic tests for ovarian cancer. J Natl Cancer Inst 97:307–309CrossRefPubMedGoogle Scholar
  50. 50.
    Petricoin EF, Ardekani AM, Hitt BA et al (2002) Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359:572–577CrossRefPubMedGoogle Scholar
  51. 51.
    Ransohoff DF (2005) Lessons from controversy: ovarian cancer screening and serum proteomics. J Natl Cancer Inst 97:315–319CrossRefPubMedGoogle Scholar
  52. 52.
    Troyanskaya O, Cantor M, Sherlock G et al (2001) Missing value estimation methods for DNA microarrays. Bioinformatics 17:520–525CrossRefPubMedGoogle Scholar
  53. 53.
    Bell JT, Pai AA, Pickrell JK et al (2011) DNA methylation patterns associate with genetic and gene expression variation in HapMap cell lines. Genome Biol 12:R10CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Johnson WE, Li C, Rabinovic A (2007) Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8:118–127CrossRefPubMedGoogle Scholar
  55. 55.
    Leek JT, Johnson WE, Parker HS et al (2012) The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28:882–883CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Huber PJ (1973) Robust regression: asymptotics, conjectures and Monte Carlo. Ann Stat 1:799–821CrossRefGoogle Scholar
  57. 57.
    Venables WN, Ripley BD (2013) Modern applied statistics with S-PLUS. Springer, BerlinGoogle Scholar
  58. 58.
    Zeileis A, Hothorn T (2002) Diagnostic checking in regression relationships. R News 2: 7–10.Google Scholar
  59. 59.
    Zeileis A (2004) Econometric computing with HC and HAC covariance matrix estimators. Journal of Statistical Software 11:1–17.Google Scholar
  60. 60.
    Zeileis A (2006) Object-oriented computation of sandwich estimators. Journal of Statistical Software 16:1–16.Google Scholar
  61. 61.
    Peng B, RK Y, Dehoff KL et al (2007) Normalizing a large number of quantitative traits using empirical normal quantile transformation. BMC Proc 1(Suppl 1):S156CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Efron B (2007) Size, power and false discovery rates. Ann Stat 35:1351–1377CrossRefGoogle Scholar
  63. 63.
    Houseman EA, Accomando WP, Koestler DC et al (2012) DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics 13:86CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Reinius LE, Acevedo N, Joerink M et al (2012) Differential DNA methylation in purified human blood cells: implications for cell lineage and studies on disease susceptibility. PLoS One 7:e41361CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Houseman EA, Molitor J, Marsit CJ (2014) Reference-free cell mixture adjustments in analysis of DNA methylation data. Bioinformatics 30:1431–1439CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Zou J, Lippert C, Heckerman D et al (2014) Epigenome-wide association studies without the need for cell-type composition. Nat Methods 11:309–311CrossRefPubMedGoogle Scholar
  67. 67.
    Patterson N, Price AL, Reich D (2006) Population structure and eigenanalysis. PLoS Genet 2:e190CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Price AL, Patterson NJ, Plenge RM et al (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909CrossRefPubMedGoogle Scholar
  69. 69.
    Barfield RT, Almli LM, Kilaru V et al (2014) Accounting for population stratification in DNA methylation studies. Genet Epidemiol 38:231–241CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Leek JT, Scharpf RB, Bravo HC et al (2010) Tackling the widespread and critical impact of batch effects in high-throughput data. Nat Rev Genet 11:733–739CrossRefPubMedGoogle Scholar
  71. 71.
    Leek JT, Storey JD (2007) Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genet 3:1724–1735CrossRefPubMedGoogle Scholar
  72. 72.
    Leek JT, Storey JD (2008) A general framework for multiple testing dependence. Proc Natl Acad Sci U S A 105:18718–18723CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Good P (2010) Exchangeable random variables. Bioinformatics 26:2214. author reply 2215CrossRefPubMedGoogle Scholar
  74. 74.
    Hannum G, Guinney J, Zhao L et al (2013) Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell 49:359–367CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  1. 1.Public Health Sciences DivisionFred Hutchinson Cancer Research CenterSeattleUSA
  2. 2.Department of Applied Mathematics and StatisticsStony Brook UniversityStony BrookUSA

Personalised recommendations