Skip to main content

Methyl-CpG-Binding Domain Sequencing: MBD-seq

  • Protocol
  • First Online:
DNA Methylation Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1708))

Abstract

Detailed biological knowledge about the potential importance of the methylome is typically lacking for common diseases. Therefore, methylome-wide association studies (MWAS) are critical to detect disease relevant methylation sites. Methyl-CpG-binding domain sequencing (MBD-seq) offers potential advantages compared to antibody-based enrichment, but performance depends critically on using an optimal protocol. Using an optimized protocol, MBD-seq can approximate the sensitivity/specificity obtained with whole-genome bisulfite sequencing, but at a fraction of the costs and time to complete the project. Thus, MBD-seq offers a comprehensive first pass at the CpG methylome and is economically feasible with the samples sizes required for MWAS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Altshuler D, Daly MJ, Lander ES (2008) Genetic mapping in human disease. Science 322:881–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rakyan VK, Down TA, Balding DJ et al (2011) Epigenome-wide association studies for common human diseases. Nat Rev Genet 12:529–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Laird PW (2010) Principles and challenges of genomewide DNA methylation analysis. Nat Rev Genet 11:191–203

    Article  CAS  PubMed  Google Scholar 

  4. Beck S, Rakyan VK (2008) The methylome: approaches for global DNA methylation profiling. Trends Genet 24:231–237

    Article  CAS  PubMed  Google Scholar 

  5. Li Y, Zhu J, Tian G et al (2010) The DNA methylome of human peripheral blood mononuclear cells. PLoS Biol 8:e533

    Article  Google Scholar 

  6. Mohn F, Weber M, Schubeler D et al (2009) Methylated DNA immunoprecipitation (MeDIP). Methods Mol Biol 507:55–64

    Article  CAS  PubMed  Google Scholar 

  7. Serre D, Lee BH, Ting AH (2010) MBD-isolated genome sequencing provides a high-throughput and comprehensive survey of DNA methylation in the human genome. Nucleic Acids Res 38:391–399

    Article  CAS  PubMed  Google Scholar 

  8. Brinkman AB, Simmer F, Ma K et al (2010) Whole-genome DNA methylation profiling using MethylCap-seq. Methods 52:232–236

    Article  CAS  PubMed  Google Scholar 

  9. Li N, Ye M, Li Y et al (2010) Whole genome DNA methylation analysis based on high throughput sequencing technology. Methods 52:203–212

    Article  PubMed  Google Scholar 

  10. Harris RA, Wang T, Coarfa C et al (2010) Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications. Nat Biotechnol 28:1097–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lister R, Mukamel EA, Nery JR et al (2013) Global epigenomic reconfiguration during mammalian brain development. Science 341:1237905

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bernstein BE, Meissner A, Lander ES (2007) The mammalian epigenome. Cell 128:669–681

    Article  CAS  PubMed  Google Scholar 

  13. Bird AP (1986) CpG-rich islands and the function of DNA methylation. Nature 321:209–213

    Article  CAS  PubMed  Google Scholar 

  14. Lister R, Pelizzola M, Dowen RH et al (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462:315–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hogart A, Lichtenberg J, Ajay SS et al (2012) Genome-wide DNA methylation profiles in hematopoietic stem and progenitor cells reveal over-representation of ETS transcription factor binding sites. Genome Res 22:1407–1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lan X, Adams C, Landers M et al (2011) High resolution detection and analysis of CpG dinucleotides methylation using MBD-Seq technology. PLoS One 6:e22226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nair SS, Coolen MW, Stirzaker C et al (2011) Comparison of methyl-DNA immunoprecipitation (MeDIP) and methyl-CpG binding domain (MBD) protein capture for genome-wide DNA methylation analysis reveal CpG sequence coverage bias. Epigenetics 6:34–44

    Article  CAS  PubMed  Google Scholar 

  18. McClay JL, Aberg KA, Clark SL et al (2014) A methylome-wide study of aging using massively parallel sequencing of the methyl-CpG-enriched genomic fraction from blood in over 700 subjects. Hum Mol Genet 23:1175–1185

    Article  CAS  PubMed  Google Scholar 

  19. Aberg KA, McClay JL, Nerella S et al (2014) Methylome-wide association study of schizophrenia: identifying blood biomarker signatures of environmental insults. JAMA Psychiat 71:255–264

    Article  CAS  Google Scholar 

  20. Aberg KA, Xie L, Chan RF et al (2015) Evaluation of methyl-binding domain based enrichment approaches revisited. PLoS One 10:e132205

    Article  Google Scholar 

  21. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with bowtie 2. Nat Methods 9:357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li H, Durbin R (2009) Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lienhard M, Grimm C, Morkel M et al (2014) MEDIPS: genome-wide differential coverage analysis of sequencing data derived from DNA enrichment experiments. Bioinformatics 30:284–286

    Article  CAS  PubMed  Google Scholar 

  24. Bock C (2012) Analysing and interpreting DNA methylation data. Nat Rev Genet 13:705–719

    Article  CAS  PubMed  Google Scholar 

  25. Aberg KA, McClay JL, Nerella S et al (2012) MBD-seq as a cost-effective approach for methylome-wide association studies: demonstration in 1500 case-control samples. Epigenomics 4:605–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. van den Oord EJ, Bukszar J, Rudolf G et al (2013) Estimation of CpG coverage in whole methylome next-generation sequencing studies. BMC Bioinformatics 14:50

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chen W, Gao G, Nerella S et al (2013) methylPCA: a toolkit for principal component analysis in methylome-wide association studies. BMC Bioinformatics 14:74

    Article  PubMed  PubMed Central  Google Scholar 

  28. Li H, Homer N (2010) A survey of sequence alignment algorithms for next-generation sequencing. Brief Bioinform 11:473–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. van den Oord EJ, Clark SL, Xie LY et al (2016) A whole methylome CpG-SNP association study of psychosis in blood and brain tissue. Schizophr Bull 42:1018–1026

    Article  PubMed  Google Scholar 

  30. Ushida H, Kawakami T, Minami K et al (2012) Methylation profile of DNA repetitive elements in human testicular germ cell tumor. Mol Carcinog 51:711–722

    Article  CAS  PubMed  Google Scholar 

  31. Bollati V, Galimberti D, Pergoli L et al (2011) DNA methylation in repetitive elements and Alzheimer disease. Brain Behav Immun 25:1078–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bollati V, Fabris S, Pegoraro V et al (2009) Differential repetitive DNA methylation in multiple myeloma molecular subgroups. Carcinogenesis 30:1330–1335

    Article  CAS  PubMed  Google Scholar 

  33. Houseman EA, Accomando WP, Koestler DC et al (2012) DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics 13:86

    Article  PubMed  PubMed Central  Google Scholar 

  34. Koestler DC, Christensen B, Karagas MR et al (2013) Blood-based profiles of DNA methylation predict the underlying distribution of cell types: a validation analysis. Epigenetics 8:816–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Durinck S, Spellman PT, Birney E et al (2009) Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat Protoc 4:1184–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin J. C. G. van den Oord .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Aberg, K.A., Chan, R.F., Xie, L., Shabalin, A.A., van den Oord, E.J.C.G. (2018). Methyl-CpG-Binding Domain Sequencing: MBD-seq. In: Tost, J. (eds) DNA Methylation Protocols. Methods in Molecular Biology, vol 1708. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7481-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7481-8_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7479-5

  • Online ISBN: 978-1-4939-7481-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics