Methyl-CpG-Binding Domain Sequencing: MBD-seq

  • Karolina A. Aberg
  • Robin F. Chan
  • Linying Xie
  • Andrey A. Shabalin
  • Edwin J. C. G. van den OordEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1708)


Detailed biological knowledge about the potential importance of the methylome is typically lacking for common diseases. Therefore, methylome-wide association studies (MWAS) are critical to detect disease relevant methylation sites. Methyl-CpG-binding domain sequencing (MBD-seq) offers potential advantages compared to antibody-based enrichment, but performance depends critically on using an optimal protocol. Using an optimized protocol, MBD-seq can approximate the sensitivity/specificity obtained with whole-genome bisulfite sequencing, but at a fraction of the costs and time to complete the project. Thus, MBD-seq offers a comprehensive first pass at the CpG methylome and is economically feasible with the samples sizes required for MWAS.

Key words

Methyl-CpG-binding domain Sequencing Affinity-based capture MBD-seq Methylome-wide association studies MWAS CpG MethylMiner Blood spots Differentially methylated regions High-dimensional data analysis RaMWAS 


  1. 1.
    Altshuler D, Daly MJ, Lander ES (2008) Genetic mapping in human disease. Science 322:881–888CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Rakyan VK, Down TA, Balding DJ et al (2011) Epigenome-wide association studies for common human diseases. Nat Rev Genet 12:529–541CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Laird PW (2010) Principles and challenges of genomewide DNA methylation analysis. Nat Rev Genet 11:191–203CrossRefPubMedGoogle Scholar
  4. 4.
    Beck S, Rakyan VK (2008) The methylome: approaches for global DNA methylation profiling. Trends Genet 24:231–237CrossRefPubMedGoogle Scholar
  5. 5.
    Li Y, Zhu J, Tian G et al (2010) The DNA methylome of human peripheral blood mononuclear cells. PLoS Biol 8:e533CrossRefGoogle Scholar
  6. 6.
    Mohn F, Weber M, Schubeler D et al (2009) Methylated DNA immunoprecipitation (MeDIP). Methods Mol Biol 507:55–64CrossRefPubMedGoogle Scholar
  7. 7.
    Serre D, Lee BH, Ting AH (2010) MBD-isolated genome sequencing provides a high-throughput and comprehensive survey of DNA methylation in the human genome. Nucleic Acids Res 38:391–399CrossRefPubMedGoogle Scholar
  8. 8.
    Brinkman AB, Simmer F, Ma K et al (2010) Whole-genome DNA methylation profiling using MethylCap-seq. Methods 52:232–236CrossRefPubMedGoogle Scholar
  9. 9.
    Li N, Ye M, Li Y et al (2010) Whole genome DNA methylation analysis based on high throughput sequencing technology. Methods 52:203–212CrossRefPubMedGoogle Scholar
  10. 10.
    Harris RA, Wang T, Coarfa C et al (2010) Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications. Nat Biotechnol 28:1097–1105CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lister R, Mukamel EA, Nery JR et al (2013) Global epigenomic reconfiguration during mammalian brain development. Science 341:1237905CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bernstein BE, Meissner A, Lander ES (2007) The mammalian epigenome. Cell 128:669–681CrossRefPubMedGoogle Scholar
  13. 13.
    Bird AP (1986) CpG-rich islands and the function of DNA methylation. Nature 321:209–213CrossRefPubMedGoogle Scholar
  14. 14.
    Lister R, Pelizzola M, Dowen RH et al (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462:315–322CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hogart A, Lichtenberg J, Ajay SS et al (2012) Genome-wide DNA methylation profiles in hematopoietic stem and progenitor cells reveal over-representation of ETS transcription factor binding sites. Genome Res 22:1407–1418CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lan X, Adams C, Landers M et al (2011) High resolution detection and analysis of CpG dinucleotides methylation using MBD-Seq technology. PLoS One 6:e22226CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Nair SS, Coolen MW, Stirzaker C et al (2011) Comparison of methyl-DNA immunoprecipitation (MeDIP) and methyl-CpG binding domain (MBD) protein capture for genome-wide DNA methylation analysis reveal CpG sequence coverage bias. Epigenetics 6:34–44CrossRefPubMedGoogle Scholar
  18. 18.
    McClay JL, Aberg KA, Clark SL et al (2014) A methylome-wide study of aging using massively parallel sequencing of the methyl-CpG-enriched genomic fraction from blood in over 700 subjects. Hum Mol Genet 23:1175–1185CrossRefPubMedGoogle Scholar
  19. 19.
    Aberg KA, McClay JL, Nerella S et al (2014) Methylome-wide association study of schizophrenia: identifying blood biomarker signatures of environmental insults. JAMA Psychiat 71:255–264CrossRefGoogle Scholar
  20. 20.
    Aberg KA, Xie L, Chan RF et al (2015) Evaluation of methyl-binding domain based enrichment approaches revisited. PLoS One 10:e132205CrossRefGoogle Scholar
  21. 21.
    Langmead B, Salzberg SL (2012) Fast gapped-read alignment with bowtie 2. Nat Methods 9:357–359CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Li H, Durbin R (2009) Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25:1754–1760CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Lienhard M, Grimm C, Morkel M et al (2014) MEDIPS: genome-wide differential coverage analysis of sequencing data derived from DNA enrichment experiments. Bioinformatics 30:284–286CrossRefPubMedGoogle Scholar
  24. 24.
    Bock C (2012) Analysing and interpreting DNA methylation data. Nat Rev Genet 13:705–719CrossRefPubMedGoogle Scholar
  25. 25.
    Aberg KA, McClay JL, Nerella S et al (2012) MBD-seq as a cost-effective approach for methylome-wide association studies: demonstration in 1500 case-control samples. Epigenomics 4:605–621CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    van den Oord EJ, Bukszar J, Rudolf G et al (2013) Estimation of CpG coverage in whole methylome next-generation sequencing studies. BMC Bioinformatics 14:50CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Chen W, Gao G, Nerella S et al (2013) methylPCA: a toolkit for principal component analysis in methylome-wide association studies. BMC Bioinformatics 14:74CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Li H, Homer N (2010) A survey of sequence alignment algorithms for next-generation sequencing. Brief Bioinform 11:473–483CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    van den Oord EJ, Clark SL, Xie LY et al (2016) A whole methylome CpG-SNP association study of psychosis in blood and brain tissue. Schizophr Bull 42:1018–1026CrossRefPubMedGoogle Scholar
  30. 30.
    Ushida H, Kawakami T, Minami K et al (2012) Methylation profile of DNA repetitive elements in human testicular germ cell tumor. Mol Carcinog 51:711–722CrossRefPubMedGoogle Scholar
  31. 31.
    Bollati V, Galimberti D, Pergoli L et al (2011) DNA methylation in repetitive elements and Alzheimer disease. Brain Behav Immun 25:1078–1083CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Bollati V, Fabris S, Pegoraro V et al (2009) Differential repetitive DNA methylation in multiple myeloma molecular subgroups. Carcinogenesis 30:1330–1335CrossRefPubMedGoogle Scholar
  33. 33.
    Houseman EA, Accomando WP, Koestler DC et al (2012) DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics 13:86CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Koestler DC, Christensen B, Karagas MR et al (2013) Blood-based profiles of DNA methylation predict the underlying distribution of cell types: a validation analysis. Epigenetics 8:816–826CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Durinck S, Spellman PT, Birney E et al (2009) Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat Protoc 4:1184–1191CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Karolina A. Aberg
    • 1
  • Robin F. Chan
    • 1
  • Linying Xie
    • 1
  • Andrey A. Shabalin
    • 1
  • Edwin J. C. G. van den Oord
    • 1
    Email author
  1. 1.Center for Biomarker Research and Precision MedicineVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations