Skip to main content
Book cover

Chaperones pp 275–291Cite as

Computational Analysis of the Chaperone Interaction Networks

Part of the Methods in Molecular Biology book series (MIMB,volume 1709)

Abstract

We provide computational protocols to identify chaperone interacting proteins using a combination of both physical (protein–protein) and genetic (gene–gene or epistatic) interaction data derived from the published large-scale proteomic and genomic studies for the budding yeast Saccharomyces cerevisiae. Using these datasets, we discuss bioinformatic analyses that can be employed to build comprehensive high-fidelity chaperone interaction networks. Given that many proteins typically function as complexes in the cell, we highlight various step-wise approaches for combining both the genetic and physical interaction datasets to decipher intra- and inter-connections for distinct chaperone- and non-chaperone-containing complexes in the network. Together, these informatics procedures will aid in identifying protein complexes with distinctive functional specializations in the cell that yield a very broad and diverse set of interactions. The described procedures can also be leveraged to datasets from other eukaryotes, including humans.

Key words

  • Chaperone network
  • Functional enrichment
  • Genetic interactions
  • Physical interactions
  • Protein complexes

Ashwani Kumar and Kamran Rizzolo are Co-first authors.

Mohan Babu and Walid A. Houry are co-corresponding authors.

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Saibil H (2013) Chaperone machines for protein folding, unfolding and disaggregation. Nat Rev Mol Cell Biol 14:630–642

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  2. Balchin D, Hayer-Hartl M, Hartl FU (2016) In vivo aspects of protein folding and quality control. Science 353:aac4354

    CrossRef  PubMed  Google Scholar 

  3. Finka A, Mattoo RU, Goloubinoff P (2016) Experimental milestones in the discovery of molecular chaperones as polypeptide unfolding enzymes. Annu Rev Biochem 85:715–742

    CrossRef  CAS  PubMed  Google Scholar 

  4. Graves PR, Haystead TA (2002) Molecular biologist's guide to proteomics. Microbiol Mol Biol Rev 66:39–63

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon AM, Cruciat CM, Remor M, Hofert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier MA, Copley RR, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G, Superti-Furga G (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141–147

    CrossRef  CAS  PubMed  Google Scholar 

  6. Perez-Riverol Y, Alpi E, Wang R, Hermjakob H, Vizcaino JA (2015) Making proteomics data accessible and reusable: current state of proteomics databases and repositories. Proteomics 15:930–949

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  7. Martens L, Vizcaino JA (2017) A golden age for working with public proteomics data. Trends Biochem Sci 42:333–341

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  8. Aebersold R, Mann M (2016) Mass-spectrometric exploration of proteome structure and function. Nature 537:347–355

    CrossRef  CAS  PubMed  Google Scholar 

  9. Boone C, Bussey H, Andrews BJ (2007) Exploring genetic interactions and networks with yeast. Nat Rev Genet 8:437–449

    CrossRef  CAS  PubMed  Google Scholar 

  10. Babu M, Arnold R, Bundalovic-Torma C, Gagarinova A, Wong KS, Kumar A, Stewart G, Samanfar B, Aoki H, Wagih O, Vlasblom J, Phanse S, Lad K, Yeou Hsiung YA, Graham C, Jin K, Brown E, Golshani A, Kim P, Moreno-Hagelsieb G, Greenblatt J, Houry WA, Parkinson J, Emili A (2014) Quantitative genome-wide genetic interaction screens reveal global epistatic relationships of protein complexes in Escherichia Coli. PLoS Genet 10:e1004120

    CrossRef  PubMed  PubMed Central  Google Scholar 

  11. Kumar A, Beloglazova N, Bundalovic-Torma C, Phanse S, Deineko V, Gagarinova A, Musso G, Vlasblom J, Lemak S, Hooshyar M, Minic Z, Wagih O, Mosca R, Aloy P, Golshani A, Parkinson J, Emili A, Yakunin AF, Babu M (2016) Conditional epistatic interaction maps reveal global functional rewiring of genome integrity pathways in Escherichia Coli. Cell Rep 14:648–661

    CrossRef  CAS  PubMed  Google Scholar 

  12. Peters JM, Colavin A, Shi H, Czarny TL, Larson MH, Wong S, Hawkins JS, CH L, Koo BM, Marta E, Shiver AL, Whitehead EH, Weissman JS, Brown ED, Qi LS, Huang KC, Gross CA (2016) A comprehensive, CRISPR-based functional analysis of essential genes in bacteria. Cell 165:1493–1506

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  13. Koo BM, Kritikos G, Farelli JD, Todor H, Tong K, Kimsey H, Wapinski I, Galardini M, Cabal A, Peters JM, Hachmann AB, Rudner DZ, Allen KN, Typas A, Gross CA (2017) Construction and analysis of two genome-scale deletion libraries for Bacillus subtilis. Cell Syst 4:291–305. e297

    CrossRef  CAS  PubMed  Google Scholar 

  14. Lehner B, Crombie C, Tischler J, Fortunato A, Fraser AG (2006) Systematic mapping of genetic interactions in Caenorhabditis elegans identifies common modifiers of diverse signaling pathways. Nat Genet 38:896–903

    CrossRef  CAS  PubMed  Google Scholar 

  15. Yu J, Pacifico S, Liu G, Finley RL Jr (2008) DroID: the drosophila interactions database, a comprehensive resource for annotated gene and protein interactions. BMC Genomics 9:461

    CrossRef  PubMed  PubMed Central  Google Scholar 

  16. Fischer B, Sandmann T, Horn T, Billmann M, Chaudhary V, Huber W, Boutros M (2015) A map of directional genetic interactions in a metazoan cell. eLife 4:e05464

    PubMed Central  Google Scholar 

  17. Tong AH, Lesage G, Bader GD, Ding H, Xu H, Xin X, Young J, Berriz GF, Brost RL, Chang M, Chen Y, Cheng X, Chua G, Friesen H, Goldberg DS, Haynes J, Humphries C, He G, Hussein S, Ke L, Krogan N, Li Z, Levinson JN, Lu H, Menard P, Munyana C, Parsons AB, Ryan O, Tonikian R, Roberts T, Sdicu AM, Shapiro J, Sheikh B, Suter B, Wong SL, Zhang LV, Zhu H, Burd CG, Munro S, Sander C, Rine J, Greenblatt J, Peter M, Bretscher A, Bell G, Roth FP, Brown GW, Andrews B, Bussey H, Boone C (2004) Global mapping of the yeast genetic interaction network. Science 303:808–813

    CrossRef  CAS  PubMed  Google Scholar 

  18. Zhao R, Davey M, Hsu YC, Kaplanek P, Tong A, Parsons AB, Krogan N, Cagney G, Mai D, Greenblatt J, Boone C, Emili A, Houry WA (2005) Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell 120:715–727

    CrossRef  CAS  PubMed  Google Scholar 

  19. Zhao R, Houry WA (2007) Molecular interaction network of the Hsp90 chaperone system. Adv Exp Med Biol 594:27–36

    CrossRef  PubMed  Google Scholar 

  20. Gong Y, Kakihara Y, Krogan N, Greenblatt J, Emili A, Zhang Z, Houry WA (2009) An atlas of chaperone-protein interactions in Saccharomyces cerevisiae: implications to protein folding pathways in the cell. Mol Syst Biol 5:275

    CrossRef  PubMed  PubMed Central  Google Scholar 

  21. Larance M, Lamond AI (2015) Multidimensional proteomics for cell biology. Nat Rev Mol Cell Biol 16:269–280

    CrossRef  CAS  PubMed  Google Scholar 

  22. Costanzo M, VanderSluis B, Koch EN, Baryshnikova A, Pons C, Tan G, Wang W, Usaj M, Hanchard J, Lee SD, Pelechano V, Styles EB, Billmann M, van Leeuwen J, van Dyk N, Lin ZY, Kuzmin E, Nelson J, Piotrowski JS, Srikumar T, Bahr S, Chen Y, Deshpande R, Kurat CF, Li SC, Li Z, Usaj MM, Okada H, Pascoe N, San Luis BJ, Sharifpoor S, Shuteriqi E, Simpkins SW, Snider J, Suresh HG, Tan Y, Zhu H, Malod-Dognin N, Janjic V, Przulj N, Troyanskaya OG, Stagljar I, Xia T, Ohya Y, Gingras AC, Raught B, Boutros M, Steinmetz LM, Moore CL, Rosebrock AP, Caudy AA, Myers CL, Andrews B, Boone C (2016) A global genetic interaction network maps a wiring diagram of cellular function. Science 353:aaf1420

    CrossRef  PubMed  PubMed Central  Google Scholar 

  23. Baryshnikova A, Costanzo M, Kim Y, Ding H, Koh J, Toufighi K, Youn JY, Ou J, San Luis BJ, Bandyopadhyay S, Hibbs M, Hess D, Gingras AC, Bader GD, Troyanskaya OG, Brown GW, Andrews B, Boone C, Myers CL (2010) Quantitative analysis of fitness and genetic interactions in yeast on a genome scale. Nat Methods 7:1017–1024

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  24. Oliver S (2000) Guilt-by-association goes global. Nature 403:601–603

    CrossRef  CAS  PubMed  Google Scholar 

  25. Baryshnikova A (2016) Systematic functional annotation and visualization of biological networks. Cell Syst 2:412–421

    CrossRef  CAS  PubMed  Google Scholar 

  26. Boucher B, Jenna S (2013) Genetic interaction networks: better understand to better predict. Front Genet 4:290

    CrossRef  PubMed  PubMed Central  Google Scholar 

  27. Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, Li J, Pu S, Datta N, Tikuisis AP, Punna T, Peregrin-Alvarez JM, Shales M, Zhang X, Davey M, Robinson MD, Paccanaro A, Bray JE, Sheung A, Beattie B, Richards DP, Canadien V, Lalev A, Mena F, Wong P, Starostine A, Canete MM, Vlasblom J, Wu S, Orsi C, Collins SR, Chandran S, Haw R, Rilstone JJ, Gandi K, Thompson NJ, Musso G, St Onge P, Ghanny S, Lam MH, Butland G, Altaf-Ul AM, Kanaya S, Shilatifard A, O'Shea E, Weissman JS, Ingles CJ, Hughes TR, Parkinson J, Gerstein M, Wodak SJ, Emili A, Greenblatt JF (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440:637–643

    CrossRef  CAS  PubMed  Google Scholar 

  28. Wodak SJ, Pu S, Vlasblom J, Seraphin B (2009) Challenges and rewards of interaction proteomics. Mol Cell Proteomics 8:3–18

    CrossRef  CAS  PubMed  Google Scholar 

  29. Babu M, Vlasblom J, Pu S, Guo X, Graham C, Bean BD, Burston HE, Vizeacoumar FJ, Snider J, Phanse S, Fong V, Tam YY, Davey M, Hnatshak O, Bajaj N, Chandran S, Punna T, Christopolous C, Wong V, Yu A, Zhong G, Li J, Stagljar I, Conibear E, Wodak SJ, Emili A, Greenblatt JF (2012) Interaction landscape of membrane-protein complexes in Saccharomyces cerevisiae. Nature 489:585–589

    CrossRef  CAS  PubMed  Google Scholar 

  30. Babu M, Krogan NJ, Awrey DE, Emili A, Greenblatt JF (2009) Systematic characterization of the protein interaction network and protein complexes in Saccharomyces cerevisiae using tandem affinity purification and mass spectrometry. Methods Mol Biol 548:187–207

    CrossRef  CAS  PubMed  Google Scholar 

  31. Babu M, Kagan O, Guo H, Greenblatt J, Emili A (2012) Identification of protein complexes in Escherichia coli using sequential peptide affinity purification in combination with tandem mass spectrometry. J Vis Exp 69:e4057

    Google Scholar 

  32. Hart GT, Lee I, Marcotte ER (2007) A high-accuracy consensus map of yeast protein complexes reveals modular nature of gene essentiality. BMC Bioinformatics 8:236

    CrossRef  PubMed  PubMed Central  Google Scholar 

  33. Zhang B, Park BH, Karpinets T, Samatova NF (2008) From pull-down data to protein interaction networks and complexes with biological relevance. Bioinformatics 24:979–986

    CrossRef  CAS  PubMed  Google Scholar 

  34. Pu S, Wong J, Turner B, Cho E, Wodak SJ (2009) Up-to-date catalogues of yeast protein complexes. Nucleic Acids Res 37:825–831

    CrossRef  CAS  PubMed  Google Scholar 

  35. Wang J, Li M, Deng Y, Pan Y (2010) Recent advances in clustering methods for protein interaction networks. BMC Genomics 11(Suppl 3):S10

    CrossRef  CAS  Google Scholar 

  36. Enright AJ, Van Dongen S, Ouzounis CA (2002) An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res 30:1575–1584

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  37. Loganantharaj R, Cheepala S, Clifford J (2006) Metric for measuring the effectiveness of clustering of DNA microarray expression. BMC Bioinformatics 7(Suppl 2):S5

    CrossRef  PubMed  PubMed Central  Google Scholar 

  38. Pu S, Vlasblom J, Emili A, Greenblatt J, Wodak SJ (2007) Identifying functional modules in the physical interactome of Saccharomyces cerevisiae. Proteomics 7:944–960

    CrossRef  CAS  PubMed  Google Scholar 

  39. Collins SR, Miller KM, Maas NL, Roguev A, Fillingham J, Chu CS, Schuldiner M, Gebbia M, Recht J, Shales M, Ding H, Xu H, Han J, Ingvarsdottir K, Cheng B, Andrews B, Boone C, Berger SL, Hieter P, Zhang Z, Brown GW, Ingles CJ, Emili A, Allis CD, Toczyski DP, Weissman JS, Greenblatt JF, Krogan NJ (2007) Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature 446:806–810

    CrossRef  CAS  PubMed  Google Scholar 

  40. Rutherford SL, Lindquist S (1998) Hsp90 as a capacitor for morphological evolution. Nature 396:336–342

    CrossRef  CAS  PubMed  Google Scholar 

  41. Queitsch C, Sangster TA, Lindquist S (2002) Hsp90 as a capacitor of phenotypic variation. Nature 417:618–624

    CrossRef  CAS  PubMed  Google Scholar 

  42. Karras GI, Yi S, Sahni N, Fischer M, Xie J, Vidal M, D’Andrea AD, Whitesell L, Lindquist S (2017) HSP90 shapes the consequences of human genetic variation. Cell 168:856–866

    CrossRef  CAS  PubMed  Google Scholar 

  43. Rizzolo K, Huen J, Kumar A, Phanse S, Vlasblom J, Kakihara Y, Zeineddine HA, Minic Z, Snider J, Wang W, Pons C, Seraphim TV, Boczek EE, Alberti S, Costanzo M, Myers CL, Stagljar I, Boone C, Babu M, Houry WA (2017) Features of the chaperone cellular network revealed through systematic interaction mapping. Cell Rep 20:2735–2748

    CrossRef  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

K.R. was supported by a Canadian Institutes of Health Research (CIHR) Training Program in Protein Folding and Interaction Dynamics: Principles and Diseases fellowship and by a University of Toronto Fellowship in the Department of Biochemistry. M.B. holds a CIHR New Investigator award (MSH-130178). This work was funded by CIHR grants MOP-125952, RSN- 124512, 132191, and FDN-154318 and MOP-132191 to M.B. and by MOP-93778, MOP-81256, and MOP-130374 to W.A.H.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohan Babu or Walid A. Houry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kumar, A., Rizzolo, K., Zilles, S., Babu, M., Houry, W.A. (2018). Computational Analysis of the Chaperone Interaction Networks. In: Calderwood, S., Prince, T. (eds) Chaperones. Methods in Molecular Biology, vol 1709. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7477-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7477-1_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7476-4

  • Online ISBN: 978-1-4939-7477-1

  • eBook Packages: Springer Protocols