Skip to main content

Targeted Deletion of Hsf1, 2, and 4 Genes in Mice

  • Protocol
  • First Online:
Chaperones

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1709))

Abstract

Heat shock transcription factors (Hsfs) regulate transcription of heat shock proteins as well as other genes whose promoters contain heat shock elements (HSEs). There are at least five Hsfs in mammalian cells, Hsf1, Hsf2, Hsf3, Hsf4, and Hsfy (Wu, Annu Rev Cell Dev Biol 11:441–469, 1995; Morimoto, Genes Dev 12:3788–3796, 1998; Tessari et al., Mol Hum Repord 4:253–258, 2004; Fujimoto et al., Mol Biol Cell 21:106–116, 2010; Nakai et al., Mol Cell Biol 17:469–481, 1997; Sarge et al., Genes Dev 5:1902–1911, 1991). To understand the physiological roles of Hsf1, Hsf2, and Hsf4 in vivo, we generated knockout mouse lines for these factors (Zhang et al., J Cell Biochem 86:376–393, 2002; Wang et al., Genesis 36:48–61, 2003; Min et al., Genesis 40:205–217, 2004). Numbers of other laboratories have also generated Hsf1 (Xiao et al., EMBO J 18:5943–5952, 1999; Sugahara et al., Hear Res 182:88–96, 2003), Hsf2 (McMillan et al., Mol Cell Biol 22:8005–8014, 2002; Kallio et al., EMBO J 21:2591–2601, 2002), and Hsf4 (Fujimoto et al., EMBO J 23:4297–4306, 2004) knockout mouse models. In this chapter, we describe the design of the targeting vectors, the plasmids used, and the successful generation of mice lacking the individual genes. We also briefly describe what we have learned about the physiological functions of these genes in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu C (1995) Heat shock transcription factors:structure and regulation. Annu Rev Cell Dev Biol 11:441–469

    Article  CAS  PubMed  Google Scholar 

  2. Morimoto RI (1998) Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 12:3788–3796

    Article  CAS  PubMed  Google Scholar 

  3. Anckar J, Sistonen L (2011) Regulation of HSF1 function in the heat stress response: implications in aging and disease. Annu Rev Biochem 80:1089–1115

    Article  CAS  PubMed  Google Scholar 

  4. Nakai A, Tanabe M, Kawazoe Y, Inazawa J, Morimoto RI, Nagata K (1997) HSF-4, a new member of the human heat shock factor family which lacks properties of a transcriptional activator. Mol Cell Biol 17:469–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hu Y, Mivechi NF (2006) Association and regulation of heat shock transcription factor 4b with both extracellular signal-regulated kinase mitogen-activated protein kinase and dual-specificity tyrosine phosphatase DUSP26. Mol Cell Biol 8:3282–3294

    Article  Google Scholar 

  6. Dai C, Whitesell L, Rogers AB, Lindquist S (2007) Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell 130:1005–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Min J-N, Huang L, Zimonjic D, Moskophidis D, Mivechi NF (2007) Selective suppression of lymphomas by functional loss of hsf1 in a p53-deficient mouse model of sponateous tumors. Oncogene 26(35):5086–5097

    Article  CAS  PubMed  Google Scholar 

  8. Jin X, Moskophidis D, Mivechi NF (2011) Heat shock transcription factor 1 is a key determinant of HCC development by regulating hepatic steatosis and metabolic syndrome. Cell Metab 14:91–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xi C, Hu Y, Buckhaults P, Moskophidis D, Mivechi NF (2012) Heat shock factor Hsf1 cooperates with ErbB2 (Her2/Neu) protein to promote mammary tumorigenesis and metastasis. J Biol Chem 287:35646–35657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gabai VL et al (2012) Heat shock transcription factor Hsf1 is involved in tumor progression via regulation of hypoxia-inducible factor 1 and RNA-binding protein HuR. Mol Cell Biol 32:929–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jin X et al (2012) Inactivation of heat shock factor Hsf4 induces cellular senescence and suppresses tumorigenesis in vivo. Mol Cancer Res 10:523–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bjork JK et al (2016) Heat-shock factor 2 is a suppressor of prostate cancer invasion. Oncogene 35:1770–1784

    Article  CAS  PubMed  Google Scholar 

  13. Muller U (1999) Ten years of gene targeting:targeted mouse mutants, from vector design to phenootype analysis. Mech Dev 82:3–21

    Article  CAS  PubMed  Google Scholar 

  14. Van Der Weyden L, Adams DJ, Bradley A (2002) Tools for targeted manipulation of the mouse genome. Physiol Genomics 11:133–164

    Article  PubMed  Google Scholar 

  15. Bockamp E, Sprengel R, Eshkind L, Lehmann T, Braun JM, Emmrich F, Hengstler JG (2008) Conditional transgenic mouse models: from the basics to genome-wide sets of knockouts and current studies of tissue regeneration. Regen Med 3:217–235

    Article  CAS  PubMed  Google Scholar 

  16. Bockamp E, Maringer M, Spangenberg C, Fees S, Fraser S, Eshkind L, Oesch F, Zabel B (2002) Of mice and models: improved animal models for biomedical research. Physiol Genomics 11:115–132

    Article  CAS  PubMed  Google Scholar 

  17. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratroy manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  18. Limaye A, Hall B, Kulkarni AB (2009) Manipulation of mouse embryonic stem cells for knockout mouse production. Curr Protoc Cell Biol; Chapter 19:Unit 19.13 19.13.1–24

    Google Scholar 

  19. Zhang Y, Huang L, Zhang J, Moskophidis D, Mivechi NF (2002) Targeted disruption of hsf1 leads to lack of thermotolerance and defines tissue-specific regulation for stress-inducible Hsp molecular chaperones. J Cell Biochem 86:376–393

    Article  CAS  PubMed  Google Scholar 

  20. Zhang Y, Koushik S, Dai R, Mivechi NF (1998) Structural organization and promoter analysis of murine heat shock transcription factor-1 gene. J Biol Chem 273:32514–32521

    Article  CAS  PubMed  Google Scholar 

  21. Wang G, Zhang J, Moskophidis D, Mivechi NF (2003) Targeted disruption of the heat shock transcription factor (hsf)-2 gene results in increased embryonic lethality, neuronal defects, and reduced spermatogenesis. Genesis 36:48–61

    Article  CAS  PubMed  Google Scholar 

  22. Thomas KR, Capecchi MR (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51:503–512

    Article  CAS  PubMed  Google Scholar 

  23. Godwin AR, Stadler HS, Nakamura K, Capecchi MR (1998) Detection of targeted GFP-Hox gene fusions during mouse embryogenesis. Proc Natl Acad Sci U S A 95:13042–13047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Min J, Zhang Y, Moskophidis D, Mivechi NF (2004) Unique contribution of heat shock transcription factor 4 in ocular lens development and fiber cell differentiation. Genesis 40:205–217

    Article  CAS  PubMed  Google Scholar 

  25. Huang L, Mivechi NF, Moskophidis D (2001) Insights into regulation and function of the major stress-induced hsp70 molecular chaperone in vivo: analysis of mice with targeted gene disruption of the hsp70.1 or hsp70.3 genes. Mol Cell Biol 21:8575–8591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huang L, Min J, Maters S, Mivechi NF, Moskophidis DI (2007) Insights into the function and regulation and of small hsp25 (HSPB1) in mouse model with targeted gene disruption. Genesis 45:487–501

    Article  CAS  PubMed  Google Scholar 

  27. Xiao X, Zuo X, Davis AA, McMillan DR, Curry BB, Richardson JA, Benjamin IJ (1999) HSF1 is required for extra-embryonic development, postnatal growth and protection during inflammatory responses in mice. EMBO J 18:5943–5952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sugahara K, Inouye S, Izu H, Katoh Y, Katsuki K, Takemoto T, Shimogori H, Yamashita H, Nakai A (2003) Heat shock transcription factor HSF1 is required for survival of sensory hair cells against acoustic overexposure. Hear Res 182:88–96

    Article  CAS  PubMed  Google Scholar 

  29. McMillan DR, Christians E, Forster M, Xiao X, Connell P, Plumier JC, Zuo X, Richardson J, Morgan S, Benjamin IJ (2002) Heat shock transcription factor 2 is not essential for embryonic development, fertility, or adult cognitive and psychomotor function in mice. Mol Cell Biol 22:8005–8014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kallio M, Chang Y, Manuel M, Alastalo TP, Rallu M, Gitton Y, Pirkkala L, Loones MT, Paslaru L, Larney S, Hiard S, Morange M, Sistonen L, Mezger V (2002) Brain abnormalities, defective meiotic chromosome synapsis and female subfertility in HSF2 null mice. EMBO J 21:2591–2601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kurokawa H et al (2000) Inhibition of HER2/neu (erbB-2) and mitogen-activated protein kinases enhances tamoxifen action against HER2-overexpressing, tamoxifen-resistant breast cancer cells. Cancer Res 60:5887–5894

    CAS  PubMed  Google Scholar 

  32. Christians E, Davis AA, Thomas SD, Benjamin IJ (2000) Maternal effect of Hsf1 on reproductive success. Nature 407:693–694

    Article  CAS  PubMed  Google Scholar 

  33. Homma S et al (2007) Demyelination, astrogliosis, and accumulation of ubiquitinated proteins, hallmarks of CNS disease in hsf1-deficient mice. J Neurosci 27:7974–7986

    Article  CAS  PubMed  Google Scholar 

  34. Jin X, Moskophidis D, Hu Y, Phillips A, Mivechi NF (2009) Heat shock factor 1 deficiency via its downstream target gene alphaB-crystallin (Hspb5) impairs p53 degradation. J Cell Biochem 107:504–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Su KH et al (2016) HSF1 critically attunes proteotoxic stress sensing by mTORC1 to combat stress and promote growth. Nat Cell Biol 18:527–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang G, Ying Z, Jin X, Tu N, Zhang Y, Phillips M, Moskophidis D, Mivechi NF (2004) Essentail requirement for both hsf1 and hsf2 transcriptional activity activity in spermatogenesis and male fertility. Genesis 38:66–80

    Article  PubMed  Google Scholar 

  37. Bu L et al (2002) Mutant DNA-binding domain of HSF4 is associated with autosomal dominant lamellar and Marner cataract. Nat Genet 31:276–278

    Article  CAS  PubMed  Google Scholar 

  38. Koni PA, Joshi SK, Temann UA, Olson D, Burkly L, Flavell RA (2001) Conditional vascular cell adhesion molecule 1 deletion in mice: impaired lymphocyte migration to bone marrow. J Exp Med 193:741–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tessari A, Salata E, Ferlin E, Bartoloni L, Slongo ML, Foresta C (2004) Characterization of HSFY, a novel AZFb gene on the Y chromosome with a possible role in human spermatogenesis. Mol Hum Repord 4:253–258

    Article  Google Scholar 

  40. Fujimoto M, Hayashida N, Katoh T, Oshima K, Shinkawa T, Prakasam R, Tan K, Inouye S, Takii R, Nakai A (2010) A novel mouse HSF3 has the potential to activate non-classical heat shock genes during heat shock. Mol Biol Cell 21(1):106–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sarge KD, Zimarino V, Holm K, Wu C, Morimoto RI (1991) Cloning and characterization of two mouse heat shock factors with distinct inducible and constitutive DNA-binding ability. Genes Dev 5:1902–1911

    Article  CAS  PubMed  Google Scholar 

  42. Fujimoto M, Izu H, Seki K, Fukuda K, Nishida T, Yamada S, Kato K, Yonemura S, Inouye S, Nakai A (2004) HSF4 is required for normal cell growth and differentiation during mouse lens development. EMBO J 23(21):4297–4306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by VA Award 1I01BX000161 and NIH grants CA062130 and CA132640 (N.F.M.) and CA121951 and CA121951-07S2 (D.M.). For generation of hsf knockout mice, the microinjection of ES cells and generation of chimeras were conducted in the Medical College of Georgia (Augusta University) Embryonic Stem Cell and Transgenic Core Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nahid F. Mivechi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jin, X., Eroglu, B., Moskophidis, D., Mivechi, N.F. (2018). Targeted Deletion of Hsf1, 2, and 4 Genes in Mice. In: Calderwood, S., Prince, T. (eds) Chaperones. Methods in Molecular Biology, vol 1709. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7477-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7477-1_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7476-4

  • Online ISBN: 978-1-4939-7477-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics