Whole Genome Library Construction for Next Generation Sequencing

  • Jonathan J. Keats
  • Lori Cuyugan
  • Jonathan Adkins
  • Winnie S. LiangEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1706)


With the rapid evolution of genomics technologies over the past decade, whole genome sequencing (WGS) has become an increasingly accessible tool in biomedical research. WGS applications include analysis of genomic DNA from single individuals, multiple related family members, and tumor/normal samples from the same patient in the context of oncology. A number of different modalities are available for performing WGS; this chapter focuses on wet lab library construction procedures for complex short insert WGS libraries using the KAPA Hyper Prep Kit (Kapa Biosystems), and includes a discussion of appropriate quality control measures for sequencing on the Illumina HiSeq2000 platform. Additional modifications to the protocol for long insert WGS library construction, to assess structural alterations and copy number changes, are also described.

Key words

Whole genome sequencing Next generation sequencing Short insert whole genome sequencing Long insert whole genome sequencing 


  1. 1.
    Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921CrossRefPubMedGoogle Scholar
  2. 2.
    Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain–terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Swerdlow H, Wu SL, Harke H, Dovichi NJ (1990) Capillary gel electrophoresis for DNA sequencing. Laser–induced fluorescence detection with the sheath flow cuvette. J Chromatogr 516:61–67CrossRefPubMedGoogle Scholar
  4. 4.
    Mardis ER (2008) The impact of next–generation sequencing technology on genetics. Trends Genet 24:133–141. Epub 2008 Feb 1011CrossRefPubMedGoogle Scholar
  5. 5.
    Shendure J, Ji H (2008) Next–generation DNA sequencing. Nat Biotechnol 26:1135–1145. CrossRefPubMedGoogle Scholar
  6. 6.
    Tucker T, Marra M, Friedman JM (2009) Massively parallel sequencing: the next big thing in genetic medicine. Am J Hum Genet 85:142–154. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Liang WS, Aldrich J, Tembe W, Kurdoglu A, Cherni I, Phillips L, Reiman R, Baker A, Weiss GJ, Carpten JD et al (2014) Long insert whole genome sequencing for copy number variant and translocation detection. Nucleic Acids Res 42:e8. Epub 2013 Sep 1025CrossRefPubMedGoogle Scholar
  8. 8.
    Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, Hall KP, Evers DJ, Barnes CL, Bignell HR et al (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456:53–59. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Fedurco M, Romieu A, Williams S, Lawrence I, Turcatti G (2006) BTA, a novel reagent for DNA attachment on glass and efficient generation of solid--phase amplified DNA colonies. Nucleic Acids Res 34:e22CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Craig DW, Nasser S, Corbett R, Chan SK, Murray L, Legendre C, Tembe W, Adkins J, Kim N, Wong S et al (2016) A somatic reference standard for cancer genome sequencing. Sci Rep 6:24607. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Jonathan J. Keats
    • 1
  • Lori Cuyugan
    • 1
  • Jonathan Adkins
    • 1
  • Winnie S. Liang
    • 1
    Email author
  1. 1.Translational Genomics Research Institute (TGen)PhoenixUSA

Personalised recommendations