Advertisement

Development of Targeted Therapies Based on Gene Modification

  • Taylor M. Benson
  • Fatjon Leti
  • Johanna K. DiStefanoEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1706)

Abstract

With the advent of next-generation sequencing (NGS) and the demand for a personalized healthcare system, the fields of precision medicine and gene therapy are advancing in new directions. There is a push to identify genes that contribute to disease development, either alone or in conjunction with other genes or environmental factors, and then design targeted therapies based on this knowledge, rather than the traditional approach of treating generalized symptoms with pharmaceuticals in a one-size-fits-all manner. Identification of genes that contribute to disease pathogenesis and progression is critical for the maturation of the precision medicine field. Concomitant with a better understanding of disease pathology, precision medicine approaches can be adopted with greater confidence and are expected to lead to a new standard for clinical practice. In this chapter, we provide a brief introduction to precision medicine, discuss the importance of identifying genes and genetic variants that contribute to disease development and progression, offer examples of approaches that can be applied to treat specific diseases, and present some of the current challenges and limitations of precision medicine.

Key words

Precision medicine Personalized medicine Gene therapy Pharmacogenomics NGS, GWAS 

References

  1. 1.
    Szefler SJ, Martin RJ (2010) Lessons learned from variation in response to therapy in clinical trials. J Allergy Clin Immunol 125:285–292. quiz 293–284CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Yu H, Zhang VW (2015) Precision medicine for continuing phenotype expansion of human genetic diseases. Biomed Res Int 2015:745043PubMedPubMedCentralGoogle Scholar
  3. 3.
    Panicker V (2011) Genetics of thyroid function and disease. Clin Biochem Rev 32:165–175PubMedPubMedCentralGoogle Scholar
  4. 4.
    McAninch EA, Bianco AC (2016) The history and future of treatment of hypothyroidism. Ann Intern Med 164:50–56CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Tonstad S, Nathan E, Oda K, Fraser G (2013) Vegan diets and hypothyroidism. Nutrients 5:4642–4652CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Moyerbrailean GA, Richards AL, Kurtz D, Kalita CA, Davis GO, Harvey CT, Alazizi A, Watza D, Sorokin Y, Hauff N, Zhou X, Wen X, Pique-Regi R, Luca F (2016) High-throughput allele-specific expression across 250 environmental conditions. Genome Res 26:1627–1638CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Wen W, Cho YS, Zheng W, Dorajoo R, Kato N, Qi L, Chen CH, Delahanty RJ, Okada Y, Tabara Y, Gu D, Zhu D, Haiman CA, Mo Z, Gao YT, Saw SM, Go MJ, Takeuchi F, Chang LC, Kokubo Y, Liang J, Hao M, Le Marchand L, Zhang Y, Hu Y, Wong TY, Long J, Han BG, Kubo M, Yamamoto K, Su MH, Miki T, Henderson BE, Song H, Tan A, He J, Ng DP, Cai Q, Tsunoda T, Tsai FJ, Iwai N, Chen GK, Shi J, Xu J, Sim X, Xiang YB, Maeda S, Ong RT, Li C, Nakamura Y, Aung T, Kamatani N, Liu JJ, Lu W, Yokota M, Seielstad M, Fann CS, A. T. C. Genetic Investigation of, J. Y. Wu, J. Y. Lee, F. B. Hu, T. Tanaka, E. S. Tai, and X. O. Shu (2012) Meta-analysis identifies common variants associated with body mass index in east Asians. Nat Genet 44:307–311CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Do CB, Tung JY, Dorfman E, Kiefer AK, Drabant EM, Francke U, Mountain JL, Goldman SM, Tanner CM, Langston JW, Wojcicki A, Eriksson N (2011) Web-based genome-wide association study identifies two novel loci and a substantial genetic component for Parkinson’s disease. PLoS Genet 7:e1002141CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Miyajima A, Furihata T, Chiba K (2009) Functional analysis of GC Box and its CpG methylation in the regulation of CYP1A2 gene expression. Drug Metab Pharmacokinet 24:269–276CrossRefPubMedGoogle Scholar
  10. 10.
    Flowers E, Won GY, Fukuoka Y (2015) MicroRNAs associated with exercise and diet: a systematic review. Physiol Genomics 47:1–11CrossRefPubMedGoogle Scholar
  11. 11.
    Peng Y, Yu S, Li H, Xiang H, Peng J, Jiang S (2014) MicroRNAs: emerging roles in adipogenesis and obesity. Cell Signal 26:1888–1896CrossRefPubMedGoogle Scholar
  12. 12.
    Owens JB, Mauro D, Stoytchev I, Bhakta MS, Kim MS, Segal DJ, Moisyadi S (2013) Transcription activator like effector (TALE)-directed piggyBac transposition in human cells. Nucleic Acids Res 41:9197–9207CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Voigt K, Gogol-Doring A, Miskey C, Chen W, Cathomen T, Izsvak Z, Ivics Z (2012) Retargeting sleeping beauty transposon insertions by engineered zinc finger DNA-binding domains. Mol Ther 20:1852–1862CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Xue HY, Zhang X, Wang Y, Xiaojie L, Dai WJ, Xu Y (2016) In vivo gene therapy potentials of CRISPR-Cas9. Gene Ther 23:557–559CrossRefPubMedGoogle Scholar
  15. 15.
    Magner D, Biala E, Lisowiec-Wachnicka J, Kierzek E, Kierzek R (2015) A tandem oligonucleotide approach for SNP-selective RNA degradation using modified antisense oligonucleotides. PLoS One 10:e0142139CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Grunweller A, Hartmann RK (2007) Locked nucleic acid oligonucleotides: the next generation of antisense agents? BioDrugs 21:235–243CrossRefPubMedGoogle Scholar
  17. 17.
    Kobayashi H, Tomari Y (2016) RISC assembly: coordination between small RNAs and Argonaute proteins. Biochim Biophys Acta 1859:71–81CrossRefPubMedGoogle Scholar
  18. 18.
    Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438:685–689CrossRefPubMedGoogle Scholar
  19. 19.
    Kolypetri P, King J, Larijani M, Carayanniotis G (2015) Genes and environment as predisposing factors in autoimmunity: acceleration of spontaneous thyroiditis by dietary iodide in NOD.H2(h4) mice. Int Rev Immunol 34:542–556CrossRefPubMedGoogle Scholar
  20. 20.
    Zhang E, Xu H (2017) A new insight in chimeric antigen receptor-engineered T cells for cancer immunotherapy. J Hematol Oncol 10:1CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Posey AD Jr, Schwab RD, Boesteanu AC, Steentoft C, Mandel U, Engels B, Stone JD, Madsen TD, Schreiber K, Haines KM, Cogdill AP, Chen TJ, Song D, Scholler J, Kranz DM, Feldman MD, Young R, Keith B, Schreiber H, Clausen H, Johnson LA, June CH (2016) Engineered CAR T cells targeting the cancer-associated tn-glycoform of the membrane mucin MUC1 control adenocarcinoma. Immunity 44:1444–1454CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821CrossRefPubMedGoogle Scholar
  23. 23.
    Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096CrossRefPubMedGoogle Scholar
  24. 24.
    Liang P, Xu Y, Zhang X, Ding C, Huang R, Zhang Z, Lv J, Xie X, Chen Y, Li Y, Sun Y, Bai Y, Songyang Z, Ma W, Zhou C, Huang J (2015) CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 6:363–372CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Thomas CE, Ehrhardt A, Kay MA (2003) Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 4:346–358CrossRefPubMedGoogle Scholar
  26. 26.
    Baum C, Kustikova O, Modlich U, Li Z, Fehse B (2006) Mutagenesis and oncogenesis by chromosomal insertion of gene transfer vectors. Hum Gene Ther 17:253–263CrossRefPubMedGoogle Scholar
  27. 27.
    Bessis N, GarciaCozar FJ, Boissier MC (2004) Immune responses to gene therapy vectors: influence on vector function and effector mechanisms. Gene Ther 11(Suppl 1):S10–S17CrossRefPubMedGoogle Scholar
  28. 28.
    Pack DW, Hoffman AS, Pun S, Stayton PS (2005) Design and development of polymers for gene delivery. Nat Rev Drug Discov 4:581–593CrossRefPubMedGoogle Scholar
  29. 29.
    Tseng WC, Haselton FR, Giorgio TD (1997) Transfection by cationic liposomes using simultaneous single cell measurements of plasmid delivery and transgene expression. J Biol Chem 272:25641–25647CrossRefPubMedGoogle Scholar
  30. 30.
    Farhood H, Serbina N, Huang L (1995) The role of dioleoyl phosphatidylethanolamine in cationic liposome mediated gene transfer. Biochim Biophys Acta 1235:289–295CrossRefPubMedGoogle Scholar
  31. 31.
    Wang H, Agarwal P, Zhao S, Yu J, Lu X, He X (2016) A near-infrared laser-activated “Nanobomb” for breaking the barriers to microRNA delivery. Adv Mater 28:347–355CrossRefPubMedGoogle Scholar
  32. 32.
    Naldini L (2011) Ex vivo gene transfer and correction for cell-based therapies. Nat Rev Genet 12:301–315CrossRefPubMedGoogle Scholar
  33. 33.
    Gschweng E, De Oliveira S, Kohn DB (2014) Hematopoietic stem cells for cancer immunotherapy. Immunol Rev 257:237–249CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Jethwa H, Adami AA, Maher J (2014) Use of gene-modified regulatory T-cells to control autoimmune and alloimmune pathology: is now the right time? Clin Immunol 150:51–63CrossRefPubMedGoogle Scholar
  35. 35.
    Cartier N, Hacein-Bey-Abina S, Bartholomae CC, Veres G, Schmidt M, Kutschera I, Vidaud M, Abel U, Dal-Cortivo L, Caccavelli L, Mahlaoui N, Kiermer V, Mittelstaedt D, Bellesme C, Lahlou N, Lefrere F, Blanche S, Audit M, Payen E, Leboulch P, l’Homme B, Bougneres P, Von Kalle C, Fischer A, Cavazzana-Calvo M, Aubourg P (2009) Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 326:818–823CrossRefPubMedGoogle Scholar
  36. 36.
    Candotti F, Shaw KL, Muul L, Carbonaro D, Sokolic R, Choi C, Schurman SH, Garabedian E, Kesserwan C, Jagadeesh GJ, Fu PY, Gschweng E, Cooper A, Tisdale JF, Weinberg KI, Crooks GM, Kapoor N, Shah A, Abdel-Azim H, Yu XJ, Smogorzewska M, Wayne AS, Rosenblatt HM, Davis CM, Hanson C, Rishi RG, Wang X, Gjertson D, Yang OO, Balamurugan A, Bauer G, Ireland JA, Engel BC, Podsakoff GM, Hershfield MS, Blaese RM, Parkman R, Kohn DB (2012) Gene therapy for adenosine deaminase-deficient severe combined immune deficiency: clinical comparison of retroviral vectors and treatment plans. Blood 120:3635–3646CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676CrossRefPubMedGoogle Scholar
  38. 38.
    Shi Y, Desponts C, Do JT, Hahm HS, Scholer HR, Ding S (2008) Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell 3:568–574CrossRefPubMedGoogle Scholar
  39. 39.
    Maherali N, Ahfeldt T, Rigamonti A, Utikal J, Cowan C, Hochedlinger K (2008) A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell 3:340–345CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S (2008) Generation of mouse induced pluripotent stem cells without viral vectors. Science 322:949–953CrossRefPubMedGoogle Scholar
  41. 41.
    Zhou W, Freed CR (2009) Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells 27:2667–2674CrossRefPubMedGoogle Scholar
  42. 42.
    Takahashi K, Yamanaka S (2013) Induced pluripotent stem cells in medicine and biology. Development 140:2457–2461CrossRefPubMedGoogle Scholar
  43. 43.
    Wu N, Doorenbos M, Chen DF (2016) Induced pluripotent stem cells: development in the ophthalmologic field. Stem Cells Int 2016:2361763PubMedPubMedCentralGoogle Scholar
  44. 44.
    Reardon S, Cyranoski D (2014) Japan stem-cell trial stirs envy. Nature 513:287–288CrossRefPubMedGoogle Scholar
  45. 45.
    Normile D (2017) iPS cell therapy reported safe. Science 355:1109–1110CrossRefPubMedGoogle Scholar
  46. 46.
    Li HL, Fujimoto N, Sasakawa N, Shirai S, Ohkame T, Sakuma T, Tanaka M, Amano N, Watanabe A, Sakurai H, Yamamoto T, Yamanaka S, Hotta A (2015) Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Rep 4:143–154CrossRefGoogle Scholar
  47. 47.
    Ou Z, Niu X, He W, Chen Y, Song B, Xian Y, Fan D, Tang D, Sun X (2016) The combination of CRISPR/Cas9 and iPSC technologies in the gene therapy of human beta-thalassemia in mice. Sci Rep 6:32463CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Chambliss AB, Chan DW (2016) Precision medicine: from pharmacogenomics to pharmacoproteomics. Clin Proteomics 13:25CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Ashley EA (2016) Towards precision medicine. Nat Rev Genet 17:507–522CrossRefPubMedGoogle Scholar
  50. 50.
    Hess GP, Fonseca E, Scott R, Fagerness J (2015) Pharmacogenomic and pharmacogenetic-guided therapy as a tool in precision medicine: current state and factors impacting acceptance by stakeholders. Genet Res (Camb) 97:e13CrossRefGoogle Scholar
  51. 51.
    Gianni L, Eiermann W, Semiglazov V, Lluch A, Tjulandin S, Zambetti M, Moliterni A, Vazquez F, Byakhov MJ, Lichinitser M, Climent MA, Ciruelos E, Ojeda B, Mansutti M, Bozhok A, Magazzu D, Heinzmann D, Steinseifer J, Valagussa P, Baselga J (2014) Neoadjuvant and adjuvant trastuzumab in patients with HER2-positive locally advanced breast cancer (NOAH): follow-up of a randomised controlled superiority trial with a parallel HER2-negative cohort. Lancet Oncol 15:640–647CrossRefPubMedGoogle Scholar
  52. 52.
    Hood L, Balling R, Auffray C (2012) Revolutionizing medicine in the 21st century through systems approaches. Biotechnol J 7:992–1001CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Servant N, Romejon J, Gestraud P, La Rosa P, Lucotte G, Lair S, Bernard V, Zeitouni B, Coffin F, Jules-Clement G, Yvon F, Lermine A, Poullet P, Liva S, Pook S, Popova T, Barette C, Prud’homme F, Dick JG, Kamal M, Le Tourneau C, Barillot E, Hupe P (2014) Bioinformatics for precision medicine in oncology: principles and application to the SHIVA clinical trial. Front Genet 5:152CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Wolkenhauer O, Auffray C, Brass O, Clairambault J, Deutsch A, Drasdo D, Gervasio F, Preziosi L, Maini P, Marciniak-Czochra A, Kossow C, Kuepfer L, Rateitschak K, Ramis-Conde I, Ribba B, Schuppert A, Smallwood R, Stamatakos G, Winter F, Byrne H (2014) Enabling multiscale modeling in systems medicine. Genome Med 6:21CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Tortolina L, Duffy DJ, Maffei M, Castagnino N, Carmody AM, Kolch W, Kholodenko BN, De Ambrosi C, Barla A, Biganzoli EM, Nencioni A, Patrone F, Ballestrero A, Zoppoli G, Verri A, Parodi S (2015) Advances in dynamic modeling of colorectal cancer signaling-network regions, a path toward targeted therapies. Oncotarget 6:5041–5058CrossRefPubMedGoogle Scholar
  56. 56.
    Stephens ZD, Lee SY, Faghri F, Campbell RH, Zhai C, Efron MJ, Iyer R, Schatz MC, Sinha S, Robinson GE (2015) Big data: astronomical or genomical? PLoS Biol 13:e1002195CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Nault JC, Datta S, Imbeaud S, Franconi A, Mallet M, Couchy G, Letouze E, Pilati C, Verret B, Blanc JF, Balabaud C, Calderaro J, Laurent A, Letexier M, Bioulac-Sage P, Calvo F, Zucman-Rossi J (2015) Recurrent AAV2-related insertional mutagenesis in human hepatocellular carcinomas. Nat Genet 47:1187–1193CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Taylor M. Benson
    • 1
  • Fatjon Leti
    • 1
  • Johanna K. DiStefano
    • 2
    Email author
  1. 1.Department of Biomedical Research, Center for Genes, Environment, and HealthNational Jewish HealthDenverUSA
  2. 2.Translational Genomics Research InstitutePhoenixUSA

Personalised recommendations