Skip to main content

Molecular Basis of Ligand Dissociation from G Protein-Coupled Receptors and Predicting Residence Time

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1705))

Abstract

G protein-coupled receptors (GPCRs) are integral membrane proteins and represent the largest class of drug targets. During the past decades progress in structural biology has enabled the crystallographic elucidation of the architecture of these important macromolecules. It also provided atomic-level visualization of ligand-receptor interactions, dramatically boosting the impact of structure-based approaches in drug discovery. However, knowledge obtained through crystallography is limited to static structural information. Less information is available showing how a ligand associates with or dissociates from a given receptor, whose importance is in fact increasingly recognized by the drug research community. Owing to recent advances in computer power and algorithms, molecular dynamics stimulations have become feasible that help in analyzing the kinetics of the ligand binding process. Here, we review what is currently known about the dynamics of GPCRs in the context of ligand association and dissociation, as determined through both crystallography and computer simulations. We particularly focus on the molecular basis of ligand dissociation from GPCRs and provide case studies that predict ligand dissociation pathways and residence time.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bjarnadottir TK, Gloriam DE, Hellstrand SH, Kristiansson H, Fredriksson R, Schioth HB (2006) Comprehensive repertoire and phylogenetic analysis of the G protein-coupled receptors in human and mouse. Genomics 88:263–273

    Article  CAS  PubMed  Google Scholar 

  2. De Amici M, Dallanoce C, Holzgrabe U, Trankle C, Mohr K (2010) Allosteric ligands for G protein-coupled receptors: a novel strategy with attractive therapeutic opportunities. Med Res Rev 30:463–549

    PubMed  Google Scholar 

  3. Santos R, Ursu O, Gaulton A, Bento AP, Donadi RS, Bologa CG, Karlsson A, Al-Lazikani B, Hersey A, Oprea TI, Overington JP (2017) A comprehensive map of molecular drug targets. Nat Rev Drug Discov 16(1):19–34

    Article  CAS  PubMed  Google Scholar 

  4. Cooke RM, Brown AJH, Marshall FH, Mason JS (2015) Structures of G protein-coupled receptors reveal new opportunities for drug discovery. Drug Discov Today 20:1355–1364

    Article  CAS  PubMed  Google Scholar 

  5. Tan Q, Zhu Y, Li J, Chen Z, Han GW, Kufareva I, Li T, Ma L, Fenalti G, Li J, Zhang W, Xie X, Yang H, Jiang H, Cherezov V, Liu H, Stevens RC, Zhao Q, Wu B (2013) Structure of the CCR5 chemokine receptor-HIV entry inhibitor maraviroc complex. Science 341:1387–1390

    Article  CAS  PubMed  Google Scholar 

  6. Liu W, Chun E, Thompson AA, Chubukov P, Xu F, Katritch V, Han GW, Roth CB, Heitman LH, IJzerman AP, Cherezov V, Stevens RC (2012) Structural basis for allosteric regulation of GPCRs by sodium ions. Science 337:232–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Andres M, Buil MA, Calbet M, Casado O, Castro J, Eastwood PR, Eichhorn P, Ferrer M, Forns P, Moreno I, Petit S, Roberts RS (2014) Structure-activity relationships (SAR) and structure-kinetic relationships (SKR) of pyrrolopiperidinone acetic acids as CRTh2 antagonists. Bioorg Med Chem Lett 24:5111–5117

    Article  CAS  PubMed  Google Scholar 

  8. Andersson K, Karlsson R, Lofas S, Franklin G, Hamalainen MD (2006) Label-free kinetic binding data as a decisive element in drug discovery. Expert Opin Drug Dis 1:439–446

    Article  CAS  Google Scholar 

  9. Guo D, Heitman LH, IJzerman AP (2015) The role of target binding kinetics in drug discovery. ChemMedChem 10:1793–1796

    Article  CAS  PubMed  Google Scholar 

  10. Copeland RA (2016) The drug-target residence time model: a 10-year retrospective. Nat Rev Drug Discov 15:87–95

    Article  CAS  PubMed  Google Scholar 

  11. Swinney DC, Haubrich BA, Liefde IV, Vauquelin G (2015) The role of binding kinetics in GPCR drug discovery. Curr Top Med Chem 15:2504–2522

    Article  CAS  PubMed  Google Scholar 

  12. Nunez S, Venhorst J, Kruse CG (2012) Target-drug interactions: first principles and their application to drug discovery. Drug Discov Today 17:10–22

    Article  CAS  PubMed  Google Scholar 

  13. Hoffmann C, Castro M, Rinken A, Leurs R, Hill SJ, Vischer HF (2015) Ligand residence time at G-protein-coupled receptors-why we should take our time to study it. Mol Pharmacol 88:552–560

    Article  CAS  PubMed  Google Scholar 

  14. Latorraca NR, Venkatakrishnan AJ, Dror RO (2017) GPCR dynamics: structures in motion. Chem Rev 117(1):139–155

    Article  CAS  PubMed  Google Scholar 

  15. Dror RO, Dirks RM, Grossman JP, Xu H, Shaw DE (2012) Biomolecular simulation: a computational microscope for molecular biology. Annu Rev Biophys 41:429–452

    Article  CAS  PubMed  Google Scholar 

  16. Dror RO, Pan AC, Arlow DH, Borhani DW, Maragakis P, Shan Y, Xu H, Shaw DE (2011) Pathway and mechanism of drug binding to G-protein-coupled receptors. Proc Natl Acad Sci U S A 108:13118–13123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kruse AC, Hu J, Pan AC, Arlow DH, Rosenbaum DM, Rosemond E, Green HF, Liu T, Chae PS, Dror RO, Shaw DE, Weis WI, Wess J, Kobilka BK (2012) Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature 482:552–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kappel K, Miao Y, McCammon JA (2015) Accelerated molecular dynamics simulations of ligand binding to a muscarinic G-protein-coupled receptor. Q Rev Biophys 48:479–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mollica L, Decherchi S, Zia SR, Gaspari R, Cavalli A, Rocchia W (2015) Kinetics of protein-ligand unbinding via smoothed potential molecular dynamics simulations. Sci Rep 5:11539

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zuckerman DM (2011) Equilibrium sampling in biomolecular simulations. Annu Rev Biophys 40:41–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. McRobb FM, Negri A, Beuming T, Sherman W (2016) Molecular dynamics techniques for modeling G protein-coupled receptors. Curr Opin Pharmacol 30:69–75

    Article  CAS  PubMed  Google Scholar 

  22. Casarosa P, Bouyssou T, Germeyer S, Schnapp A, Gantner F, Pieper M (2009) Preclinical evaluation of long-acting muscarinic antagonists: comparison of tiotropium and investigational drugs. J Pharmacol Exp Ther 330:660–668

    Article  CAS  PubMed  Google Scholar 

  23. Dowling MR, Charlton SJ (2006) Quantifying the association and dissociation rates of unlabelled antagonists at the muscarinic M3 receptor. Br J Pharmacol 148:927–937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ballesteros J, Weinstein H (1995) Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. In: Methods Neurosci, vol 25. Elsevier, Amsterdam, pp 366–428. doi:citeulike-article-id:7694060. https://doi.org/10.1016/s1043-9471(05)80049-7

    Google Scholar 

  25. Disse B, Speck GA, Rominger KL, Witek TJ Jr, Hammer R (1999) Tiotropium (Spiriva): mechanistical considerations and clinical profile in obstructive lung disease. Life Sci 64:457–464

    Article  CAS  PubMed  Google Scholar 

  26. Tautermann CS, Kiechle T, Seeliger D, Diehl S, Wex E, Banholzer R, Gantner F, Pieper MP, Casarosa P (2013) Molecular basis for the long duration of action and kinetic selectivity of tiotropium for the muscarinic m3 receptor. J Med Chem 56:8746–8756

    Article  CAS  PubMed  Google Scholar 

  27. Guo D, Pan AC, Dror RO, Mocking T, Liu R, Heitman LH, Shaw DE, IJzerman AP (2016) Molecular basis of ligand dissociation from the adenosine A2A receptor. Mol Pharmacol 89:485–491

    Article  CAS  PubMed  Google Scholar 

  28. Kim J, Jiang Q, Glashofer M, Yehle S, Wess J, Jacobson KA (1996) Glutamate residues in the second extracellular loop of the human A2a adenosine receptor are required for ligand recognition. Mol Pharmacol 49:683–691

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim J, Wess J, van Rhee AM, Schoneberg T, Jacobson KA (1995) Site-directed mutagenesis identifies residues involved in ligand recognition in the human A2a adenosine receptor. J Biol Chem 270:13987–13997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Segala E, Guo D, Cheng RK, Bortolato A, Deflorian F, Dore AS, Errey JC, Heitman LH, IJzerman AP, Marshall FH, Cooke RM (2016) Controlling the dissociation of ligands from the adenosine A2A receptor through modulation of salt bridge strength. J Med Chem 59:6470–6479

    Article  CAS  PubMed  Google Scholar 

  31. Guo D, Xia L, van Veldhoven JP, Hazeu M, Mocking T, Brussee J, IJzerman AP, Heitman LH (2014) Binding kinetics of ZM241385 derivatives at the human adenosine A2A receptor. ChemMedChem 9:752–761

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research received support from the Innovative Medicines Initiative Joint Undertaking under K4DD (www.k4dd.eu), grant agreement no. 115366, resources of which are composed of financial contribution from the European Union’s Seventh Framework Programme (FP7/2007-2013) and European Federation of Pharmaceutical Industries and Associations (EFPIA) companies’ in-kind contribution. For more information, see www.imi.europa.eu. This study was further supported by National Natural Science Foundation of China (no. 81603170 to D.G.) and Natural Science Foundation of Jiangsu Province (no. BK20160234 to D.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriaan P. IJzerman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Guo, D., IJzerman, A.P. (2018). Molecular Basis of Ligand Dissociation from G Protein-Coupled Receptors and Predicting Residence Time. In: Heifetz, A. (eds) Computational Methods for GPCR Drug Discovery. Methods in Molecular Biology, vol 1705. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7465-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7465-8_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7464-1

  • Online ISBN: 978-1-4939-7465-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics