Skip to main content

A Practical Guide for Comparative Genomics of Mobile Genetic Elements in Prokaryotic Genomes

  • Protocol
  • First Online:
Comparative Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1704))

Abstract

Mobile genetic elements (MGEs) are an important feature of prokaryote genomes but are seldom well annotated and, consequently, are often underestimated. MGEs include transposons (Tn), insertion sequences (ISs), prophages, genomic islands (GEIs), integrons, and integrative and conjugative elements (ICEs). They are intimately involved in genome evolution and promote phenomena such as genomic expansion and rearrangement, emergence of virulence and pathogenicity, and symbiosis. In spite of the annotation bottleneck, there are so far at least 75 different programs and databases dedicated to prokaryotic MGE analysis and annotation, and this number is rapidly growing. Here, we present a practical guide to explore, compare, and visualize prokaryote MGEs using a combination of available software and databases tailored to small scale genome analyses. This protocol can be coupled with expert MGE annotation and exploited for evolutionary and comparative genomic analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Canchaya C, Proux C, Fournous G et al (2003) Prophage genomics. Microbiol Mol Biol Rev 67:238–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Canchaya C, Fournous G, Chibani-Chennoufi S et al (2003) Phage as agents of lateral gene transfer. Curr Opin Microbiol 6:417–424

    Article  CAS  PubMed  Google Scholar 

  3. Canchaya C, Fournous G, Brüssow H (2004) The impact of prophages on bacterial chromosomes. Mol Microbiol 53:9–18

    Article  CAS  PubMed  Google Scholar 

  4. Burrus V, Waldor MK (2004) Shaping bacterial genomes with integrative and conjugative elements. Res Microbiol 155:376–386

    Article  CAS  PubMed  Google Scholar 

  5. Frost LS, Leplae R, Summers AO et al (2005) Mobile genetic elements: the agents of open source evolution. Nature Rev Microbiol 3:722–732

    Article  CAS  Google Scholar 

  6. Mazel D (2006) Integrons: agents of bacterial evolution. Nature Rev Microbiol 4:608–620

    Article  CAS  Google Scholar 

  7. Toleman MA, Benett PM, Walsh TR (2006) ISCR elements: novel gene-capturing systems of the 21st century? Microbiol Mol Biol Rev 70:296–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Juhas M, van der Meer JR, Gaillard M et al (2009) Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol Rev 33:376–393

    Article  CAS  PubMed  Google Scholar 

  9. Wozniak RA, Waldor MK (2010) Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow. Nature Rev Microbiol 8:552–563

    Article  CAS  Google Scholar 

  10. Varani AM, Monteiro-Vitorello CB, Nakaya HI et al (2013) The role of prophage in plant-pathogenic bacteria. Annu Rev Phytopathol 51:429–451

    Article  CAS  PubMed  Google Scholar 

  11. Fortier LC, Sekulovic O (2013) Importance of prophages to evolution and virulence of bacterial pathogens. Virulence 4:354–365

    Article  PubMed  PubMed Central  Google Scholar 

  12. Siguier P, Gourbeyre E, Chandler M (2014) Bacterial insertion sequences: their genomic impact and diversity. FEMS Microbiol Rev 38:865–891

    Article  CAS  PubMed  Google Scholar 

  13. Siguier P, Gourbeyre E, Varani AM et al (2015) Everyman’s guide to bacterial insertion sequences. In: Craig N, Chandler M, Gellert M et al (eds) Mobile DNA III. ASM Press, Washington

    Google Scholar 

  14. Camacho C, Coulouris G, Avagyan V et al (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Eddy SR (2011) Accelerated profile HMM searches. PLoS Comput Biol 7:e1002195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. O’Leary NA, Wright MW, Brister JR et al (2016) Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res 44:D733–D745

    Article  PubMed  CAS  Google Scholar 

  17. Hunter S, Apweiler R, Attwood TK et al (2009) InterPro: the integrative protein signature database. Nucleic Acids Res 37:D211–D215

    Article  CAS  PubMed  Google Scholar 

  18. Punta M, Coggill PC, Eberhardt RY et al (2012) The Pfam protein families database. Nucleic Acids Res 40:D290–D301

    Article  CAS  PubMed  Google Scholar 

  19. Haft DH, Selengut JD, White O (2003) The TIGRFams database of protein families. Nucleic Acids Res 31:371–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lima T, Auchincloss AH, Coudert E et al (2009) HAMAP: a database of completely sequenced microbial proteome sets and manually curated microbial protein families in UniProtKB/Swiss-Prot. Nucleic Acids Res 37:D471–D478

    Article  CAS  PubMed  Google Scholar 

  21. Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069

    Article  CAS  PubMed  Google Scholar 

  22. Aziz RK, Bartels D, Best AA et al (2008) The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:75

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Overbeek R, Olson R, Pusch GD et al (2014) The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 42:D206–D214

    Article  CAS  PubMed  Google Scholar 

  24. Markowitz VM, Mavromatis K, Ivanova NN et al (2009) IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics 17:2271–2278

    Article  CAS  Google Scholar 

  25. Varani AM, Siguier P, Gourbeyre E et al (2011) ISsaga is an ensemble of web-based methods for high throughput identification and semi-automatic annotation of insertion sequences in prokaryotic genomes. Genome Biol 12:R30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Siguier P, Perochon J, Lestrade L et al (2006) ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 34:D32–D36

    Article  CAS  PubMed  Google Scholar 

  27. Bi D, Xu Z, Harrison EM et al (2012) ICEberg: a web-based resource for integrative and conjugative elements found in bacteria. Nucleic Acids Res 40:D621–D626

    Article  CAS  PubMed  Google Scholar 

  28. Moura A, Soares M, Pereira C et al (2009) INTEGRALL: a database and search engine for integrons, integrases and gene cassettes. Bioinformatics 25:1096–1098

    Article  CAS  PubMed  Google Scholar 

  29. Zhou Y, Liang Y, Lynch KH et al (2011) PHAST: a fast phage search tool. Nucleic Acids Res 39:W347–W352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zomer A, Burghout P, Bootsma HJ et al (2012) ESSENTIALS: software for rapid analysis of high throughput transposon insertion sequencing data. PLoS One 7:e43012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kichenaradja P, Siguier P, Pérochon J et al (2010) ISbrowser: an extension of ISfinder for visualizing insertion sequences in prokaryotic genomes. Nucleic Acids Res 38:D62–D68

    Article  CAS  PubMed  Google Scholar 

  32. Wagner A, Lewis C, Bichsel M (2007) A survey of bacterial insertion sequences using IScan. Nucleic Acids Res 35:5284–5293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hawkey J, Hamidian M, Wick RR et al (2015) ISMapper: identifying transposase insertion sites in bacterial genomes from short read sequence data. BMC Genomics 16:667

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Biswas A, Gauthier DT, Ranjan D et al (2015) ISQuest: finding insertion sequences in prokaryotic sequence fragment data. Bioinformatics 31:3406–3412

    Article  CAS  PubMed  Google Scholar 

  35. Robinson DG, Lee MC, Marx CJ (2012) OASIS: an automated program for global investigation of bacterial and archaeal insertion sequences. Nucleic Acids Res 40:e174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen CL, Chang YJ, Hsueh CH (2013) PRAP: an ab initio software package for automated genome-wide analysis of DNA repeats for prokaryotes. Bioinformatics 21:2683–2689

    Article  CAS  Google Scholar 

  37. Bao Z, Eddy SR (2002) Automated de novo identification of repeat sequence families in sequenced genomes. Genome Res 12:1269–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Girgis HZ (2015) Red: an intelligent, rapid, accurate tool for detecting repeats de-novo on the genomic scale. BMC Bioinformatics 16:227

    Article  PubMed  PubMed Central  Google Scholar 

  39. Volfovsky N, Haas BJ, Salzberg SL (2001) A clustering method for repeat analysis in DNA sequences. Genome Biol 2:research0027.1–researc0027.11

    Article  Google Scholar 

  40. Smit AFA, Hubley R, Green P (2015) RepeatMasker. http://www.repeatmasker.org . Accessed 24 Mar 2016

  41. Achaz G, Boyer F, Rocha EPC et al (2007) Repseek, a tool to retrieve approximate repeats from large DNA sequences. Bioinformatics 23:119–121

    Article  CAS  PubMed  Google Scholar 

  42. Singh V, Mishra RK (2010) RISCI–repeat induced sequence changes identifier: a comprehensive, comparative genomics-based, in silico subtractive hybridization pipeline to identify repeat induced sequence changes in closely related genomes. BMC Bioinformatics 11:609

    Article  PubMed  PubMed Central  Google Scholar 

  43. Riadi G, Medina-Moenne C, Holmes DS (2012) TnpPred: a web service for the robust prediction of prokaryotic transposases. Comp Funct Genomics 2012:678761

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Leplae R, Lima-Mendez G, Toussaint A (2010) ACLAME: a classification of mobile genetic elements, update 2010. Nucleic Acids Res 38:D57–D61

    Article  CAS  PubMed  Google Scholar 

  45. Fouts DE (2006) Phage_Finder: automated identification and classification of prophage regions in complete bacterial genome sequences. Nucleic Acids Res 34:5839–5851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Akhter S, Aziz RK, Edwards RA (2012) PhiSpy: a novel algorithm for finding prophages in bacterial genomes that combines similarity- and composition-based strategies. Nucleic Acids Res 40:e126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Srividhya KV, Alaguraj V, Poornima G et al (2007) Identification of prophages in bacterial genomes by dinucleotide relative abundance difference. PLoS One 11:e1193

    Article  CAS  Google Scholar 

  48. Lima-Mendez G, Van Helden J, Toussaint A et al (2008) Prophinder: a computational tool for prophage prediction in prokaryotic genomes. Bioinformatics 24:863–865

    Article  CAS  PubMed  Google Scholar 

  49. Roux S, Enault F, Hurwitz BL et al (2015) VirSorter: mining viral signal from microbial genomic data. PeerJ 3:e985

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Skennerton CT, Imelfort M, Tyson GW (2013) Crass: identification and reconstruction of CRISPR from unassembled metagenomic data. Nucleic Acids Res 41:e105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rousseau C, Gonnet M, Le Romancer M et al (2009) CRISPI: a CRISPR interactive database. Bioinformatics 25:3317–3318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Grissa I, Vergnaud G, Pourcel C (2008) CRISPRcompar: a website to compare clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 36:W145–W148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Grissa I, Vergnaud G, Pourcel C (2007) The CRISPR database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics 8:172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Pinello L, Canver MC, Hoban MD et al (2015) CRISPResso: sequencing analysis toolbox for CRISPR-Cas9 genome editing. bioRxiv. https://doi.org/10.1101/031203

  55. Grissa I, Vergnaud G, Pourcel C (2007) CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 35:W52–W57

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lange SJ, Alkhnbashi OS, Rose D et al (2013) CRISPRmap: an automated classification of repeat conservation in prokaryotic adaptive immune systems. Nucleic Acids Res 41:8034–8044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bland C, Ramsey TL, Sabree F et al (2007) CRISPR recognition tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinformatics 8:209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Alkhnbashi OS, Costa F, Shah SA et al (2014) CRISPRstrand: predicting repeat orientations to determine the crRNA-encoding strand at CRISPR loci. Bioinformatics 30:i489–i496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Biswas A, Gagnon JN, Brouns SJJ et al (2013) Bioinformatic prediction and analysis of crRNA targets. RNA Biol 10:817–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Angly F, Skennerton C (2015) MinCED. https://github.com/ctSkennerton/minced . Accessed 24 Mar 2016

  61. Edgar RC (2007) PILER-CR: fast and accurate identification of CRISPR repeats. BMC Bioinformatics 8:18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Che D, Hasan MS, Wang H et al (2011) EGID: an ensemble algorithm for improved genomic island detection in genomic sequences. Bioinformation 7:311–314

    Article  PubMed  PubMed Central  Google Scholar 

  63. Che D, Hockenbury C, Marmelstein R et al (2010) Classification of genomic islands using decision trees and their ensemble algorithms. BMC Genomics 11:S1

    Article  PubMed  PubMed Central  Google Scholar 

  64. Che D, Wang H, Fazekas J et al (2014) An accurate genomic island prediction method for sequenced bacterial and archaeal genomes. J Proteomics Bioinform 7:214–221

    CAS  Google Scholar 

  65. Soares SC, Geyik H, Ramos RTJ et al (2015) GIPSY: genomic island prediction software. J Biotechnol 232:2–11. https://doi.org/10.1016/j.jbiotec.2015.09.008

    Article  PubMed  CAS  Google Scholar 

  66. Hasan MS, Liu Q, Wang H et al (2012) GIST: genomic island suite of tools for predicting genomic islands in genomic sequences. Bioinformation 8:203–205

    Article  PubMed  PubMed Central  Google Scholar 

  67. Che D, Wang H (2013) GIV: a tool for genomic islands visualization. Bioinformation 9:879–882

    Article  PubMed  PubMed Central  Google Scholar 

  68. Jain R, Raminemi S, Parekh N (2011) IGIPT–integrated genomic island prediction tool. Bioinformation 7:307–310

    Article  PubMed  PubMed Central  Google Scholar 

  69. Hudson CM, Lau BY, Williams KP (2015) Islander: a database of precisely mapped genomic islands in tRNA and tmRNA genes. Nucleic Acids Res 43:D48–D53

    Article  CAS  PubMed  Google Scholar 

  70. Baichoo S, Goodur H, Ramtohul V (2014) IslandHunter–a java-based GI detection software. PeerJ Preprints 2:e716v1

    Google Scholar 

  71. Hsiao W, Wan I, Jones SJ et al (2003) IslandPath: aiding detection of genomic islands in prokaryotes. Bioinformatics 19:418–420

    Article  CAS  PubMed  Google Scholar 

  72. Langille MGI, Hsiao WWL, Brinkman FSL (2008) Evaluation of genomic island predictors using a comparative genomics approach. BMC Bioinformatics 9:329

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Langille MGI, Brinkman FSL (2009) IslandViewer: an integrated interface for computational indentification and visualization of genomic islands. Bioinformatics 25(5):25664–25665

    Article  CAS  Google Scholar 

  74. Ou HY, He X, Harrison EM et al (2007) MobilomeFINDER: web-based tools for in silico and experimental discovery of bacterial genomic islands. Nucleic Acids Res 35:W97–W104

    Article  PubMed  PubMed Central  Google Scholar 

  75. Brito DM, Maracaja-Coutinho V, Farias ST et al (2016) A novel method to predict genomic islands based on mean shift clustering algorithm. PLoS One 11:e0146352

    Article  PubMed  PubMed Central  Google Scholar 

  76. Reva ON, Tümmler B (2005) Differentiation of regions with atypical oligonucleotide composition in bacterial genomes. BMC Bioinformatics 6:251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Ganesan H, Rakitianskaia AS, Davenport CF et al (2008) The SeqWord genome browser: an online tool for the identification and visualization of atypical regions of bacterial genomes through oligonucleotide usage. BMC Bioinformatics 9:333

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Waack S, Keller O, Asper R et al (2006) Score-based prediction of genomic islands in prokaryotic genomes using hidden Markov models. BMC Bioinformatics 7:142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Ou HY, Chen LL, Lonnen J et al (2006) A novel strategy for the identification of genomic islands by comparative analysis of the contents and contexts of tRNA sites in closely related bacteria. Nucleic Acids Res 34:e3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Vernikos GS, Parkhill J (2006) Interpolated variable order motifs for identification of horizontally acquired DNA: revisiting the Salmonella pathogenicity islands. Bioinformatics 22:2196–2203

    Article  CAS  PubMed  Google Scholar 

  81. Yoon SH, Park YK, Lee S et al (2007) Towards pathogenomics: a web-based resource for pathogenicity islands. Nucleic Acids Res 35:D395–D400

    Article  CAS  PubMed  Google Scholar 

  82. Soares SC, Abreu VAC, Ramos RTJ et al (2012) PIPS: pathogenicity island prediction software. PLoS One 7:e30848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Pundhir S, Vijayvargiya H, Kumar A (2008) PredictBias: a server for the identification of genomic and pathogenicity islands in prokaryotes. In Silico Biol 8:0019

    Google Scholar 

  84. Joss MJ, Koenig JE, Labbate M et al (2009) ACID: annotation of cassette and integron data. BMC Bioinformatics 10:118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Rajan I, Aravamuthan S, Mande SS (2007) Identification of compositionally distinct regions in genomes using the centroid method. Bioinformatics 23:2672–2677

    Article  CAS  PubMed  Google Scholar 

  86. Lee CC, Chen YPP, Yao TJ (2013) GI-POP: a combinational annotation and genomic island prediction pipeline for ongoing microbial genome projects. Gene 518:114–123

    Article  CAS  PubMed  Google Scholar 

  87. Tu Q, Ding D (2003) Detecting pathogenicity islands and anomalous gene clusters by iterative discriminant analysis. FEMS Microbiol Lett 221:269–275

    Article  CAS  PubMed  Google Scholar 

  88. Merkl R (2004) SIGI: score-based identification of genomic islands. BMC Bioinformatics 5:22

    Article  PubMed  PubMed Central  Google Scholar 

  89. Al-Nayyef H, Guyeux C, Bahi J (2014) A pipeline for insertion sequence detection and study for bacterial genome. Lect Notes Informatics 235:85–99

    Google Scholar 

  90. Zhou F, Olman V, Xu Y (2008) Insertion sequences show diverse recent activities in cyanobacteria and Archaea. BMC Genomics 9:36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Bose M, Barber RD (2006) Prophage finder: a prophage loci prediction tool for prokaryotic genome sequences. In Silico Biol 6:0020

    Google Scholar 

  92. Upadhyay SK, Sharma S (2014) SSFinder: high throughput CRISPR-Cas target sites prediction tool. Biomed Res Int 2014:742482

    PubMed  PubMed Central  Google Scholar 

  93. Kamoun C, Payen T, Hua-Van A et al (2013) Improving prokaryotic transposable elements identification using a combination of de novo and profile HMM methods. BMC Genomics 14:700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chen Y, Zhou F, Li G et al (2009) MUST: a system for identification of miniature inverted-repeat transposable elements and applications to Anabaena variabilis and Haloquadratum walsbyi. Gene 436:1–7

    Article  CAS  PubMed  Google Scholar 

  95. Herron PR, Hughes G, Chandra G (2004) Transposon express, a software application to report the identity of insertions obtained by comprehensive transposon mutagenesis of sequenced genomes: analysis of the preference for in vitro Tn5 transposition in to GC-rich DNA. Nucleic Acids Res 32:e113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Petkau A, Stuart-Edwards M, Stothard P et al (2010) Interactive microbial genome visualization with GView. Bioinformatics 26:3125–3126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Carver T, Harris SR, Berriman M et al (2012) Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 28:464–469

    Article  CAS  PubMed  Google Scholar 

  98. Bankevich A, Nurk S, Antipov D (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kajitani R, Toshimoto K, Noguchi H et al (2014) Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads. Genome Res 24:1384–1395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Reddy TBK, Thomas AD, Stamatis D et al (2015) The genomes OnLine database (GOLD) v.5: a metadata management system based on a four level (meta)genome project classification. Nucleic Acids Res 43:D1099–D1106

    Article  CAS  PubMed  Google Scholar 

  101. Lang AS, Zhaxybayeva O, Beatty JT (2012) Gene transfer agents: phage-like elements of genetic exchange. Nat Rev Microbiol 10:472–482

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Guy L, Nystedt B, Toft C et al (2013) A gene transfer agent and a dynamic repertoire of secretion systems hold the keys to the explosive radiation of the emerging pathogen Bartonella. PLoS Genet 9:e1003393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327:167–170

    Article  CAS  PubMed  Google Scholar 

  104. Escudero JA, Loot C, Nivina A et al (2015) The integron: adaptation on demand. In: Craig N, Chandler M, Gellert M et al (eds) Mobile DNA III. ASM Press, Washington

    Google Scholar 

  105. Gillings M, Boucher Y, Labbate M et al (2008) The evolution of class 1 integrons and the rise of antibiotic resistance. J Bacteriol 190:5095–5100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Laslett D, Canback B (2004) ARAGORN, a program to detect rRNA genes and tmRNA genes in nucleotide equences. Nucleic Acids Res 32:11–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by a project from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES-BIGA, number 3385/2013). DOA was supported by a postdoctoral research fellowship from the São Paulo Research Foundation (FAPESP n° 2015/14600-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro M. Varani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Oliveira Alvarenga, D., Moreira, L.M., Chandler, M., Varani, A.M. (2018). A Practical Guide for Comparative Genomics of Mobile Genetic Elements in Prokaryotic Genomes. In: Setubal, J., Stoye, J., Stadler, P. (eds) Comparative Genomics. Methods in Molecular Biology, vol 1704. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7463-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7463-4_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7461-0

  • Online ISBN: 978-1-4939-7463-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics