The Use of Psoralen Photobinding to Study Transcription-Induced Supercoiling

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1703)

Abstract

Proteins manipulating intracellular DNA necessarily impart torsional stress, which redistributes across the DNA. Overtwisting and undertwisting of the double helix result in the manifestation of positive and negative DNA supercoiling. A growing body of evidence indicates that DNA topology is an important player in the key regulatory steps of genome function, highlighting the need for biochemical techniques to detect dynamic changes in the DNA structure. Psoralen binding to DNA in vivo is proportional to the level of supercoiling, providing an excellent probe for the topological state of nuclear DNA. Here we describe a psoralen-based methodology to detect transcription-induced DNA supercoiling genome-wide. The DNA samples generated with this approach can be hybridized to microarray platforms or high-throughput sequenced to provide a topological snapshot of the whole genome.

Key words

DNA topology DNA supercoiling Psoralen Transcription Topoisomerases Chromatin High-throughput genomics 

References

  1. 1.
    Kouzine F, Levens D, Baranello L (2014) DNA topology and transcription. Nucleus 5(3):195–202CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ma J, Wang M (2014) Interplay between DNA supercoiling and transcription elongation. Transcription 5(3):e28636CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Nelson P (1999) Transport of torsional stress in DNA. Proc Natl Acad Sci U S A 96(25):14342–14347CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Liu LF, Wang JC (1987) Supercoiling of the DNA template during transcription. Proc Natl Acad Sci U S A 84(20):7024–7027CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Droge P (1994) Protein tracking-induced supercoiling of DNA: a tool to regulate DNA transactions in vivo? BioEssays 16(2):91–99CrossRefPubMedGoogle Scholar
  6. 6.
    Freeman LA, Garrard WT (1992) DNA supercoiling in chromatin structure and gene expression. Crit Rev Eukaryot Gene Expr 2(2):165–209PubMedGoogle Scholar
  7. 7.
    Sinden RR, Bat O, Kramer PR (1999) Psoralen cross-linking as probe of torsional tension and topological domain size in vivo. Methods 17(2):112–124CrossRefPubMedGoogle Scholar
  8. 8.
    Bermudez I et al (2010) A method for genome-wide analysis of DNA helical tension by means of psoralen-DNA photobinding. Nucleic Acids Res 38(19):e182CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ljungman M, Hanawalt PC (1992) Localized torsional tension in the DNA of human cells. Proc Natl Acad Sci U S A 89(13):6055–6059CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Jupe ER, Sinden RR, Cartwright IL (1993) Stably maintained microdomain of localized unrestrained supercoiling at a drosophila heat-shock gene locus. EMBO J 12(3):1067–1075PubMedPubMedCentralGoogle Scholar
  11. 11.
    Sinden RR, Carlson JO, Pettijohn DE (1980) Torsional tension in the DNA double helix measured with trimethylpsoralen in living E. coli cells: analogous measurements in insect and human cells. Cell 21(3):773–783CrossRefPubMedGoogle Scholar
  12. 12.
    Naughton C et al (2013) Transcription forms and remodels supercoiling domains unfolding large-scale chromatin structures. Nat Struct Mol Biol 20(3):387–395CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kouzine F et al (2013) Transcription-dependent dynamic supercoiling is a short-range genomic force. Nat Struct Mol Biol 20(3):396–403CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Teves SS, Henikoff S (2014) Transcription-generated torsional stress destabilizes nucleosomes. Nat Struct Mol Biol 21(1):88–94CrossRefPubMedGoogle Scholar
  15. 15.
    Matsumoto K, Hirose S (2004) Visualization of unconstrained negative supercoils of DNA on polytene chromosomes of Drosophila. J Cell Sci 117(Pt 17):3797–3805CrossRefPubMedGoogle Scholar
  16. 16.
    Joshi RS, Pina B, Roca J (2010) Positional dependence of transcriptional inhibition by DNA torsional stress in yeast chromosomes. EMBO J 29(4):740–748CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Sinden RR (2013) The helix turns at 60: writhing free in chromosomes. Nat Struct Mol Biol 20(3):251–253CrossRefPubMedGoogle Scholar
  18. 18.
    Podnar J et al (2014) Next-generation sequencing RNA-Seq library construction. Curr Protoc Mol Biol 106:4.21.1–4.2119CrossRefGoogle Scholar
  19. 19.
    Baranello L et al (2016) RNA polymerase II regulates Topoisomerase 1 activity to favor efficient transcription. Cell 165(2):357–371CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Benarroch-Popivker D et al (2016) TRF2-mediated control of telomere DNA topology as a mechanism for chromosome-end protection. Mol Cell 61(2):274–286CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lal A et al (2016) Genome scale patterns of supercoiling in a bacterial chromosome. Nat Commun 7:11055CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  1. 1.Laboratory of PathologyNCI/NIHBethesdaUSA
  2. 2.Laboratory of PathologyNCI/NIHBethesdaUSA

Personalised recommendations