A Fluorescence-Based Assay for Identification of Bacterial Topoisomerase I Poisons

  • Thirunavukkarasu Annamalai
  • Bokun Cheng
  • Neelam Keswani
  • Yuk-Ching Tse-DinhEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1703)


Bacterial Topoisomerase I is a potential target for the identification of novel topoisomerase poison inhibitors that could provide leads for a new class of antibacterial compounds. Here we describe in detail a fluorescence-based cleavage assay that is successfully used in HTS for the discovery of bacterial topoisomerase Ι poisons.

Key words

Bacterial topoisomerase I Topoisomerase I poisons Fluorescence-based assay High-throughput screening 



We thank the staff at NERCE/NSRB for access to screening libraries and HTS facilities, assistance in assay setup, data processing and analysis. This work was supported by funding from TB Alliance and National Institutes of Health grants R21NS067592, R01AI069313 to YT. 


  1. 1.
    Wang JC (2002) Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol 3(6):430–440. CrossRefPubMedGoogle Scholar
  2. 2.
    Chen SH, Chan N, Hsieh T (2013) New mechanistic and functional insights into DNA topoisomerases. Annu Rev Biochem 82:139–170. CrossRefPubMedGoogle Scholar
  3. 3.
    Pommier Y (2013) Drugging topoisomerases: lessons and challenges. ACS Chem Biol 8(1):82–95. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Vos SM, Tretter EM, Schmidt BH et al (2011) All tangled up: how cells direct, manage and exploit topoisomerase function. Nat Rev Mol Cell Biol 12(12):827–841. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Liu LF (1989) DNA topoisomerase poisons as antitumor drugs. Annu Rev Biochem 58:351–375. CrossRefPubMedGoogle Scholar
  6. 6.
    Aldred KJ, Kerns RJ, Osheroff N (2014) Mechanism of quinolone action and resistance. Biochemistry 53(10):1565–1574. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Forterre P, Gadelle D (2009) Phylogenomics of DNA topoisomerases: their origin and putative roles in the emergence of modern organisms. Nucleic Acids Res 37(3):679–692. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Tse-Dinh YC (1998) Bacterial and archeal type I topoisomerases. Biochim Biophys Acta 1400(1–3):19–27CrossRefPubMedGoogle Scholar
  9. 9.
    Tse-Dinh Y (2015) Targeting bacterial topoisomerase I to meet the challenge of finding new antibiotics. Future Med Chem 7(4):459–471. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Tse-Dinh Y (2009) Bacterial topoisomerase I as a target for discovery of antibacterial compounds. Nucleic Acids Res 37(3):731–737. CrossRefPubMedGoogle Scholar
  11. 11.
    Sorokin EP, Cheng B, Rathi S et al (2008) Inhibition of Mg2+ binding and DNA religation by bacterial topoisomerase I via introduction of an additional positive charge into the active site region. Nucleic Acids Res 36(14):4788–4796. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Narula G, Annamalai T, Aedo S et al (2011) The strictly conserved Arg-321 residue in the active site of Escherichia coli topoisomerase I plays a critical role in DNA rejoining. J Biol Chem 286(21):18673–18680. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Cheng B, Shukla S, Vasunilashorn S et al (2005) Bacterial cell killing mediated by topoisomerase I DNA cleavage activity. J Biol Chem 280(46):38489–38495. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Sutherland JH, Cheng B, Liu I et al (2008) SOS induction by stabilized topoisomerase IA cleavage complex occurs via the RecBCD pathway. J Bacteriol 190(9):3399–3403. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Chen T (2009) A practical guide to assay development and high-throughput screening in drug discovery. CRC Press, Boca RatonGoogle Scholar
  16. 16.
    Acker MG, Auld DS (2014) Considerations for the design and reporting of enzyme assays in high-throughput screening applications. Perspect Sci 1(1–6):56–73. CrossRefGoogle Scholar
  17. 17.
    Vet JM, Marras SE (2005) Design and optimization of molecular beacon real-time polymerase chain reaction assays. In: Herdewijn P (ed) Oligonucleotide synthesis. Humana Press, New York, pp 273–290Google Scholar
  18. 18.
    Annamalai T, Dani N, Cheng B et al (2009) Analysis of DNA relaxation and cleavage activities of recombinant Mycobacterium tuberculosis DNA topoisomerase I from a new expression and purification protocol. BMC Biochem 10:18. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Sikder D, Nagaraja V (2000) Determination of the recognition sequence of Mycobacterium smegmatis topoisomerase I on mycobacterial genomic sequences. Nucleic Acids Res 28(8):1830–1837CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13):3406–3415. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Zhang JH, Chung TD, Oldenburg KR (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4(2):67–73CrossRefPubMedGoogle Scholar
  22. 22.
    Cheng B, Annamalai T, Sandhaus S et al (2015) Inhibition of Zn(II) binding type IA topoisomerases by Organomercury compounds and hg(II). PLoS One 10(3):e0120022. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Cheng B, Cao S, Vasquez V et al (2013) Identification of anziaic acid, a lichen depside from Hypotrachyna sp., as a new topoisomerase poison inhibitor. PLoS One 8(4):e60770. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Thirunavukkarasu Annamalai
    • 1
    • 2
  • Bokun Cheng
    • 3
  • Neelam Keswani
    • 1
    • 2
  • Yuk-Ching Tse-Dinh
    • 1
    • 2
    Email author
  1. 1.Department of Chemistry and BiochemistryFlorida International UniversityMiamiUSA
  2. 2.Biomolecular Sciences InstituteFlorida International UniversityMiamiUSA
  3. 3.Department of PediatricsAlbert Einstein College of MedicineBronxUSA

Personalised recommendations