Advertisement

Biochemical Reconstitution and Characterization of Multicomponent Drug Efflux Transporters

  • Martin Picard
  • Elena B. Tikhonova
  • Isabelle Broutin
  • Shuo Lu
  • Alice Verchère
  • Helen I. Zgurskaya
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1700)

Abstract

Efflux pumps are the major determinants in bacterial multidrug resistance. In Gram-negative bacteria, efflux transporters are organized as macromolecular tripartite machineries that span the two-membrane cell envelope of the bacterium. Biochemical data on purified proteins are essential to draw a mechanistic picture of this highly dynamical, multicomponent, efflux system. We describe protocols for the reconstitution and the in vitro study of transporters belonging to RND and ABC superfamilies: the AcrAB–TolC and MacAB–TolC efflux systems from Escherichia coli and the MexAB–OprM efflux pump from Pseudomonas aeruginosa.

Key words

Membrane protein purification Proteoliposomes Transport kinetics 

References

  1. 1.
    Nikaido H, Vaara M (1985) Molecular basis of bacterial outer membrane permeability. Microbiol Rev 49:1–32PubMedPubMedCentralGoogle Scholar
  2. 2.
    Lomovskaya O, Lewis K (1992) Emr, an Escherichia coli locus for multidrug resistance. Proc Natl Acad Sci U S A 89:8938–8942CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ma D, Cook DN, Alberti M, Pon NG, Nikaido H, Hearst JE (1993) Molecular cloning and characterization of acrA and acrE genes of Escherichia coli. J Bacteriol 175:6299–6313CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Lomovskaya O, Zgurskaya HI, Totrov M, Watkins WJ (2007) Waltzing transporters and ‘the dance macabre’ between humans and bacteria. Nat Rev Drug Discov 6:56–65CrossRefPubMedGoogle Scholar
  5. 5.
    Nikaido H (2001) Preventing drug access to targets: cell surface permeability barriers and active efflux in bacteria. Semin Cell Dev Biol 12:215–223CrossRefPubMedGoogle Scholar
  6. 6.
    Zgurskaya HI, Krishnamoorthy G, Tikhonova EB, Lau SY, Stratton KL (2003) Mechanism of antibiotic efflux in Gram-negative bacteria. Front Biosci 8:s862–s873CrossRefPubMedGoogle Scholar
  7. 7.
    Dinh T, Paulsen IT, Saier MH Jr (1994) A family of extracytoplasmic proteins that allow transport of large molecules across the outer membranes of gram-negative bacteria. J Bacteriol 176:3825–3831CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Aires JR, Nikaido H (2005) Aminoglycosides are captured from both periplasm and cytoplasm by the AcrD multidrug efflux transporter of Escherichia coli. J Bacteriol 187:1923–1929CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Krishnamoorthy G, Tikhonova EB, Zgurskaya HI (2008) Fitting periplasmic membrane fusion proteins to inner membrane transporters: mutations that enable Escherichia coli AcrA to function with Pseudomonas aeruginosa MexB. J Bacteriol 190:691–698CrossRefPubMedGoogle Scholar
  10. 10.
    Zgurskaya HI, Nikaido H (1999) Bypassing the periplasm: reconstitution of the AcrAB multidrug efflux pump of Escherichia coli. Proc Natl Acad Sci U S A 96:7190–7195CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Andersen C, Hughes C, Koronakis V (2001) Protein export and drug efflux through bacterial channel-tunnels. Curr Opin Cell Biol 13:412–416CrossRefPubMedGoogle Scholar
  12. 12.
    Thanabalu T, Koronakis E, Hughes C, Koronakis V (1998) Substrate-induced assembly of a contiguous channel for protein export from E. coli: reversible bridging of an inner-membrane translocase to an outer membrane exit pore. EMBO J 17:6487–6496CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Paulsen IT, Chen J, Nelson KE, Saier MH Jr (2001) Comparative genomics of microbial drug efflux systems. J Mol Microbiol Biotechnol 3:145–150PubMedGoogle Scholar
  14. 14.
    Saier MH Jr, Beatty JT, Goffeau A, Harley KT, Heijne WH, Huang SC, Jack DL, Jahn PS, Lew K, Liu J, Pao SS, Paulsen IT, Tseng TT, Virk PS (1999) The major facilitator superfamily. J Mol Microbiol Biotechnol 1:257–279PubMedGoogle Scholar
  15. 15.
    Tseng TT, Gratwick KS, Kollman J, Park D, Nies DH, Goffeau A, Saier MH Jr (1999) The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. J Mol Microbiol Biotechnol 1:107–125PubMedGoogle Scholar
  16. 16.
    Saier MH Jr, Paulsen IT, Sliwinski MK, Pao SS, Skurray RA, Nikaido H (1998) Evolutionary origins of multidrug and drug-specific efflux pumps in bacteria. FASEB J 12:265–274PubMedGoogle Scholar
  17. 17.
    Verchere A, Dezi M, Adrien V, Broutin I, Picard M (2015) In vitro transport activity of the fully assembled MexAB-OprM efflux pump from Pseudomonas aeruginosa. Nat Commun 6:6890CrossRefPubMedGoogle Scholar
  18. 18.
    Modali SD, Zgurskaya HI (2011) The periplasmic membrane proximal domain of MacA acts as a switch in stimulation of ATP hydrolysis by MacB transporter. Mol Microbiol 81:937–951CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Tikhonova EB, Dastidar V, Rybenkov VV, Zgurskaya HI (2009) Kinetic control of TolC recruitment by multidrug efflux complexes. Proc Natl Acad Sci U S A 106:16416–16421CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Tikhonova EB, Devroy VK, Lau SY, Zgurskaya HI (2007) Reconstitution of the Escherichia coli macrolide transporter: the periplasmic membrane fusion protein MacA stimulates the ATPase activity of MacB. Mol Microbiol 63:895–910CrossRefPubMedGoogle Scholar
  21. 21.
    Goldberg M, Pribyl T, Juhnke S, Nies DH (1999) Energetics and topology of CzcA, a cation/proton antiporter of the resistance-nodulation-cell division protein family. J Biol Chem 274:26065–26070CrossRefPubMedGoogle Scholar
  22. 22.
    Lu S, Zgurskaya HI (2012) Role of ATP binding and hydrolysis in assembly of MacAB-TolC macrolide transporter. Mol Microbiol 86:1132–1143CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Su CC, Long F, Zimmermann MT, Rajashankar KR, Jernigan RL, Yu EW (2011) Crystal structure of the CusBA heavy-metal efflux complex of Escherichia coli. Nature 470:558–562CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Su CC, Yang F, Long F, Reyon D, Routh MD, Kuo DW, Mokhtari AK, Van Ornam JD, Rabe KL, Hoy JA, Lee YJ, Rajashankar KR, Yu EW (2009) Crystal structure of the membrane fusion protein CusB from Escherichia coli. J Mol Biol 393:342–355CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Lin HT, Bavro VN, Barrera NP, Frankish HM, Velamakanni S, van Veen HW, Robinson CV, Borges-Walmsley MI, Walmsley AR (2009) MacB ABC transporter is a dimer whose ATPase activity and macrolide-binding capacity are regulated by the membrane fusion protein MacA. J Biol Chem 284:1145–1154CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Welch A, Awah CU, Jing S, van Veen Hendrik W, Venter H (2010) Promiscuous partnering and independent activity of MexB, the multidrug transporter protein from Pseudomonas aeruginosa. Biochem J 430:355–364CrossRefPubMedGoogle Scholar
  27. 27.
    Verchère A, Broutin I, Picard M (2012) Photo-induced proton gradients for the in vitro investigation of bacterial efflux pumps. Sci Rep 2:306CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kapoor V, Wendell D (2013) Engineering bacterial efflux pumps for solar-powered bioremediation of surface waters. Nano Lett 13:2189–2193CrossRefPubMedGoogle Scholar
  29. 29.
    Picard M, Verchère A, Broutin I (2012) Monitoring the active transport of efflux pumps after their reconstitution into proteoliposomes: caveats and keys. Anal Biochem 420:194–196CrossRefPubMedGoogle Scholar
  30. 30.
    Zgurskaya HI, Nikaido H (1999) AcrA is a highly asymmetric protein capable of spanning the periplasm. J Mol Biol 285:409–420CrossRefPubMedGoogle Scholar
  31. 31.
    Mokhonov V, Mokhonova E, Yoshihara E, Masui R, Sakai M, Akama H, Nakae T (2005) Multidrug transporter MexB of Pseudomonas aeruginosa: overexpression, purification, and initial structural characterization. Protein Expr Purif 40:91–100CrossRefPubMedGoogle Scholar
  32. 32.
    Trépout S, Taveau JC, Benabdelhak H, Granier T, Ducruix A, Frangakis AS, Lambert O (2010) Structure of reconstituted bacterial membrane efflux pump by cryo-electron tomography. Biochim Biophys Acta Biomembr 1798:1953–1960CrossRefGoogle Scholar
  33. 33.
    Gilson L, Mahanty HK, Kolter R (1990) Genetic analysis of an MDR-like export system: the secretion of colicin V. EMBO J 9:3875–3894PubMedPubMedCentralGoogle Scholar
  34. 34.
    Phan G, Benabdelhak H, Lascombe MB, Benas P, Rety S, Picard M, Ducruix A, Etchebest C, Broutin I (2010) Structural and dynamical insights into the opening mechanism of P. aeruginosa OprM channel. Structure 18:507–517CrossRefPubMedGoogle Scholar
  35. 35.
    Ponchon L, Catala M, Seijo B, El Khouri M, Dardel F, Nonin-Lecomte S, Tisné C (2013) Co-expression of RNA–protein complexes in Escherichia coli and applications to RNA biology. Nucleic Acids Res 41:e150CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Ames BN (1966) Assay of inorganic phosphate, total phosphate and phospholipids. Methods Enzymol VIII:115–118CrossRefGoogle Scholar
  37. 37.
    Randerath E, Randerath K (1967) Ion-exchange thin-layer chromatography: XVI. Techniques for preparation and analysis of oligonucleotides. J Chromatogr 31:485–499CrossRefPubMedGoogle Scholar
  38. 38.
    Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Lopez O, de la Maza A, Coderch L, Lopez-Iglesias C, Wehrli E, Parra JL (1998) Direct formation of mixed micelles in the solubilization of phospholipid liposomes by Triton X-100. FEBS Lett 426:314–318CrossRefPubMedGoogle Scholar
  40. 40.
    Ntsogo Enguene VY, Verchère A, Phan G, Broutin I, Picard M (2015) Catch me if you can: a biotinylated proteoliposome affinity assay for the investigation of assembly of the MexA-MexB-OprM efflux pump from Pseudomonas aeruginosa. Front Microbiol 6:541PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Martin Picard
    • 4
  • Elena B. Tikhonova
    • 3
  • Isabelle Broutin
    • 1
  • Shuo Lu
    • 2
  • Alice Verchère
    • 1
  • Helen I. Zgurskaya
    • 2
  1. 1.Laboratoire de Cristallographie et RMN Biologiques, UMR 8015, CNRSUniversité Paris Descartes, Faculté de Pharmacie de ParisParisFrance
  2. 2.Department of Chemistry and BiochemistryUniversity of OklahomaNormanUSA
  3. 3.Department of Cell Biology and BiochemistryTexas Tech University Health Science CenterLubbockUSA
  4. 4.Laboratoire de Biologie Physico-chimique des ProtÕines MembranairesUMR7099. IBPC, UniversitÕ Paris DiderotParisFrance

Personalised recommendations