Advertisement

NMR Spectroscopy Approach to Study the Structure, Orientation, and Mechanism of the Multidrug Exporter EmrE

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1700)

Abstract

Multidrug exporters are a class of membrane proteins that remove antibiotics from the cytoplasm of bacteria and in the process confer multidrug resistance to the organism. This chapter outlines the sample preparation and optimization of oriented solid-state NMR experiments applied to the study of structure and dynamics for the model transporter EmrE from the small multidrug resistance (SMR) family.

Key words

Solid-state NMR PISEMA NMR pedagogy Membrane proteins Multidrug resistance Bicelles 

Notes

Acknowledgments

This work was supported by NIH (R01AI108889) and NSF (MCB1506420). M.L. acknowledges support from a Margaret-Strauss Kramer Fellowship.

References

  1. 1.
    Nikaido H (2009) Multidrug resistance in bacteria. Annu Rev Biochem 78:119–146. https://doi.org/10.1146/annurev.biochem.78.082907.145923 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Nikaido H, Pages JM (2012) Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria. FEMS Microbiol Rev 36(2):340–363. https://doi.org/10.1111/j.1574-6976.2011.00290.x CrossRefPubMedGoogle Scholar
  3. 3.
    Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J, Handelsman J (2010) Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol 4:251–259CrossRefGoogle Scholar
  4. 4.
    Du D, van Veen HW, Murakami S et al (2015) Structure, mechanism and cooperation of bacterial multidrug transporters. Curr Opin Struct Biol 33:76–91. https://doi.org/10.1016/j.sbi.2015.07.015 CrossRefPubMedGoogle Scholar
  5. 5.
    Traaseth NJ, Shi L, Verardi R et al (2009) Structure and topology of monomeric phospholamban in lipid membranes determined by a hybrid solution and solid-state NMR approach. Proc Natl Acad Sci U S A 106(25):10165–10170. https://doi.org/10.1073/pnas.0904290106 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Vostrikov Vitaly V, Grant Christopher V, Opella Stanley J et al (2011) On the combined analysis of (2)H and (15)N/(1)H solid-state NMR data for determination of transmembrane peptide orientation and dynamics. Biophys J 101(12):2939–2947. https://doi.org/10.1016/j.bpj.2011.11.008 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Marassi FM, Opella SJ (2000) A solid-state NMR index of helical membrane protein structure and topology. J Magn Reson 144(1):150–155. https://doi.org/10.1006/jmre.2000.2035 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Cross TA (1986) A solid state nuclear magnetic resonance approach for determining the structure of gramicidin a without model fitting. Biophys J 49(1):124–126CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Wang J, Denny J, Tian C et al (2000) Imaging membrane protein helical wheels. J Magn Reson 144(1):162–167. https://doi.org/10.1006/jmre.2000.2037 CrossRefPubMedGoogle Scholar
  10. 10.
    Buffy JJ, Traaseth NJ, Mascioni A et al (2006) Two-dimensional solid-state NMR reveals two topologies of sarcolipin in oriented lipid bilayers. Biochemistry 45(36):10939–10946. https://doi.org/10.1021/bi060728d CrossRefPubMedGoogle Scholar
  11. 11.
    Opella SJ, Marassi FM (2004) Structure determination of membrane proteins by NMR spectroscopy. Chem Rev 104(8):3587–3606. https://doi.org/10.1021/cr0304121 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Clark NA, Rothschild KJ, Luippold DA et al (1980) Surface-induced lamellar orientation of multilayer membrane arrays. Theoretical analysis and a new method with application to purple membrane fragments. Biophys J 31(1):65–96. https://doi.org/10.1016/S0006-3495(80)85041-7 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Moll F 3rd, Cross TA (1990) Optimizing and characterizing alignment of oriented lipid bilayers containing gramicidin D. Biophys J 57(2):351–362. https://doi.org/10.1016/S0006-3495(90)82536-4 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Sanders Ii CR, Hare BJ, Howard KP et al (1994) Magnetically-oriented phospholipid micelles as a tool for the study of membrane-associated molecules. Prog Nucl Magn Reson Spectrosc 26(Part 5):421–444. https://doi.org/10.1016/0079–6565(94)80012-X CrossRefGoogle Scholar
  15. 15.
    Song Z, Kovacs FA, Wang J et al (2000) Transmembrane domain of M2 protein from influenza a virus studied by solid-state 15N polarization inversion spin exchange at magic angle NMR. Biophys J 79(2):767–775. https://doi.org/10.1016/S0006-3495(00)76334-X CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Traaseth NJ, Verardi R, Torgersen KD et al (2007) Spectroscopic validation of the pentameric structure of phospholamban. Proc Natl Acad Sci U S A 104(37):14676–14681. https://doi.org/10.1073/pnas.0701016104 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    De Angelis AA, Opella SJ (2007) Bicelle samples for solid-state NMR of membrane proteins. Nat Protoc 2(10):2332–2338CrossRefPubMedGoogle Scholar
  18. 18.
    Sanders CR, Schwonek JP (1992) Characterization of magnetically orientable bilayers in mixtures of dihexanoylphosphatidylcholine and dimyristoylphosphatidylcholine by solid-state NMR. Biochemistry 31(37):8898–8905. https://doi.org/10.1021/bi00152a029 CrossRefPubMedGoogle Scholar
  19. 19.
    Marcotte I, Auger M (2005) Bicelles as model membranes for solid- and solution-state NMR studies of membrane peptides and proteins. Concepts Magn Reson A 24A(1):17–37. https://doi.org/10.1002/cmr.a.20025 CrossRefGoogle Scholar
  20. 20.
    Warschawski DE, Arnold AA, Beaugrand M et al (2011) Choosing membrane mimetics for NMR structural studies of transmembrane proteins. Biochim Biophys Acta Biomembr 1808(8):1957–1974. https://doi.org/10.1016/j.bbamem.2011.03.016 CrossRefGoogle Scholar
  21. 21.
    Prosser RS, Hwang JS, Vold RR (1998) Magnetically aligned phospholipid bilayers with positive ordering: a new model membrane system. Biophys J 74(5):2405–2418. https://doi.org/10.1016/S0006-3495(98)77949-4 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Yamamoto K, Pearcy P, Ramamoorthy A (2014) Bicelles exhibiting magnetic alignment for a broader range of temperatures: a solid-state NMR study. Langmuir 30(6):1622–1629. https://doi.org/10.1021/la404331t CrossRefPubMedGoogle Scholar
  23. 23.
    Yamamoto K, Pearcy P, Lee D-K et al (2015) Temperature-resistant bicelles for structural studies by solid-state NMR spectroscopy. Langmuir 31(4):1496–1504. https://doi.org/10.1021/la5043876 CrossRefPubMedGoogle Scholar
  24. 24.
    Triba MN, Devaux PF, Warschawski DE (2006) Effects of lipid chain length and unsaturation on bicelles stability. A phosphorus NMR study. Biophys J 91(4):1357–1367. https://doi.org/10.1529/biophysj.106.085118 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Wu C, Ramamoorthy A, Opella S (1994) High-resolution heteronuclear dipolar solid-state NMR spectroscopy. J Magn Reson 109A:270–272CrossRefGoogle Scholar
  26. 26.
    Ramamoorthy A, Wei Y, Lee D-K (2004) PISEMA solid-state NMR spectroscopy. In: Annual reports on NMR spectroscopy, vol 52. Academic Press, London, pp 1–52. https://doi.org/10.1016/S0066-4103(04)52001-X CrossRefGoogle Scholar
  27. 27.
    Gayen A, Banigan JR, Traaseth NJ (2013) Ligand-induced conformational changes of the multidrug resistance transporter EmrE probed by oriented solid-state NMR spectroscopy. Angew Chem Int Ed 52(39):10321–10324. https://doi.org/10.1002/anie.201303091 CrossRefGoogle Scholar
  28. 28.
    Cho M-K, Gayen A, Banigan JR et al (2014) Intrinsic conformational plasticity of native EmrE provides a pathway for multidrug resistance. J Am Chem Soc 136(22):8072–8080. https://doi.org/10.1021/ja503145x CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Gor’kov PL, Chekmenev EY, Li C et al (2007) Using low-E resonators to reduce RF heating in biological samples for static solid-state NMR up to 900 MHz. J Magn Reson 185(1):77–93. https://doi.org/10.1016/j.jmr.2006.11.008 CrossRefPubMedGoogle Scholar
  30. 30.
    Delaglio F, Grzesiek S, Vuister GW et al (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6(3):277–293. https://doi.org/10.1007/bf00197809 CrossRefPubMedGoogle Scholar
  31. 31.
    Fung BM, Khitrin AK, Ermolaev K (2000) An improved broadband decoupling sequence for liquid crystals and solids. J Magn Reson 142(1):97–101. https://doi.org/10.1006/jmre.1999.1896 CrossRefPubMedGoogle Scholar
  32. 32.
    Bielecki ACK, De Groot HJM, Griffin RG, Levitt MH (1990) Frequency-switched Lee-Goldburg sequence in solids. Adv Magn Reson 14:111–150CrossRefGoogle Scholar
  33. 33.
    Goldburg WG, Lee M (1965) Nuclear magnetic resonance line narrowing by a rotation RF field. Phys Rev 140:1261–1271CrossRefGoogle Scholar
  34. 34.
    Vinogradov E, Madhu PK, Vega S (1999) High-resolution proton solid-state NMR spectroscopy by phase-modulated Lee–Goldburg experiment. Chem Phys Lett 314(5–6):443–450. https://doi.org/10.1016/S0009-2614(99)01174-4 CrossRefGoogle Scholar
  35. 35.
    Fu R, Tian C, Cross TA (2002) NMR spin locking of proton magnetization under a frequency-switched Lee–Goldburg pulse sequence. J Magn Reson 154(1):130–135. https://doi.org/10.1006/jmre.2001.2468 CrossRefPubMedGoogle Scholar
  36. 36.
    Yamamoto K, Lee DK, Ramamoorthy A (2005) Broadband-PISEMA solid-state NMR spectroscopy. Chem Phys Lett 407(4–6):289–293. https://doi.org/10.1016/j.cplett.2005.03.082 CrossRefGoogle Scholar
  37. 37.
    Gopinath T, Traaseth NJ, Mote K et al (2010) Sensitivity enhanced heteronuclear correlation spectroscopy in multidimensional solid-state NMR of oriented systems via chemical shift coherences. J Am Chem Soc 132(15):5357–5363. https://doi.org/10.1021/ja905991s CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Veglia TGaG (2009) Sensitivity enhancement in static solid-state NMR experiments via single- and multiple-quantum dipolar coherences. J Am Chem Soc 131(16):5754–5756CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Gopinath T, Veglia G (2010) Improved resolution in dipolar NMR spectra using constant time evolution PISEMA experiment. Chem Phys Lett 494(1–3):104–110. https://doi.org/10.1016/j.cplett.2010.05.078 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Koroloff SN, Nevzorov AA (2015) Optimization of cross-polarization at low radiofrequency fields for sensitivity enhancement in solid-state NMR of membrane proteins reconstituted in magnetically aligned bicelles. J Magn Reson 256:14–22. https://doi.org/10.1016/j.jmr.2015.03.016 CrossRefPubMedGoogle Scholar
  41. 41.
    Tang W, Nevzorov AA (2011) Repetitive cross-polarization contacts via equilibration-re-equilibration of the proton bath: sensitivity enhancement for NMR of membrane proteins reconstituted in magnetically aligned bicelles. J Magn Reson 212(1):245–248. https://doi.org/10.1016/j.jmr.2011.06.028 CrossRefPubMedGoogle Scholar
  42. 42.
    Bertram R, Quine JR, Chapman MS et al (2000) Atomic refinement using orientational restraints from solid-state NMR. J Magn Reson 147(1):9–16. https://doi.org/10.1006/jmre.2000.2193 CrossRefPubMedGoogle Scholar
  43. 43.
    De Angelis AA, Howell SC, Nevzorov AA et al (2006) Structure determination of a membrane protein with two trans-membrane helices in aligned phospholipid bicelles by solid-state NMR spectroscopy. J Am Chem Soc 128(37):12256–12267. https://doi.org/10.1021/ja063640w CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Traaseth NJ, Gopinath T, Veglia G (2010) On the performance of spin diffusion NMR techniques in oriented solids: prospects for resonance assignments and distance measurements from separated local field experiments. J Phys Chem B 114(43):13872–13880. https://doi.org/10.1021/jp105718r CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Nevzorov AA (2008) Mismatched Hartmann−Hahn conditions cause proton-mediated intermolecular magnetization transfer between dilute low-spin nuclei in NMR of static solids. J Am Chem Soc 130(34):11282–11283. https://doi.org/10.1021/ja804326b CrossRefPubMedGoogle Scholar
  46. 46.
    Fleishman SJ, Harrington SE, Enosh A et al (2006) Quasi-symmetry in the cryo-EM structure of EmrE provides the key to modeling its transmembrane domain. J Mol Biol 364(1):54–67. https://doi.org/10.1016/j.jmb.2006.08.072 CrossRefPubMedGoogle Scholar
  47. 47.
    Chen Y-J, Pornillos O, Lieu S et al (2007) X-ray structure of EmrE supports dual topology model. Proc Natl Acad Sci U S A 104(48):18999–19004. https://doi.org/10.1073/pnas.0709387104 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    deAzevedo ER, Bonagamba TJ, Schmidt-Rohr K (2000) Pure-exchange solid-state NMR. J Magn Reson 142(1):86–96. https://doi.org/10.1006/jmre.1999.1918 CrossRefPubMedGoogle Scholar
  49. 49.
    Gayen A, Leninger M, Traaseth NJ (2016) Protonation of a glutamate residue modulates the dynamics of the drug transporter EmrE. Nat Chem Biol 12(3):141–145. https://doi.org/10.1038/nchembio.1999. http://www.nature.com/nchembio/journal/v12/n3/abs/nchembio.1999.html—supplementary-information
  50. 50.
    Lu GJ, Opella SJ (2014) Resonance assignments of a membrane protein in phospholipid bilayers by combining multiple strategies of oriented sample solid-state NMR. J Biomol NMR 58(1):69–81. https://doi.org/10.1007/s10858-013-9806-y CrossRefPubMedGoogle Scholar
  51. 51.
    Banigan JR, Gayen A, Traaseth NJ (2015) Correlating lipid bilayer fluidity with sensitivity and resolution of polytopic membrane protein spectra by solid-state NMR spectroscopy. Biochim Biophys Acta 1848(1, Part B):334–341. https://doi.org/10.1016/j.bbamem.2014.05.003 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.Department of ChemistryNew York UniversityNew YorkUSA

Personalised recommendations