Advertisement

Crystallographic Analysis of MATE-Type Multidrug Exporter with Its Inhibitors

  • Tsukasa Kusakizako
  • Yoshiki Tanaka
  • Christopher J. Hipolito
  • Hiroaki Suga
  • Osamu Nureki
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1700)

Abstract

Multidrug exporters expressed in pathogens efflux substrate drugs such as antibiotics, and thus, the development of inhibitors against them has eagerly been anticipated. Furthermore, the crystal structures of multidrug exporters with their inhibitors provide novel insights into the inhibitory mechanism and the development of more specific and effective inhibitors. We previously reported the complex structures of the Multidrug And Toxic compound Extrusion (MATE)-type multidrug exporter with the macrocyclic peptides, which inhibit the efflux of substrates by the MATE-type multidrug exporter (Tanaka et al., Nature 496:247–251, 2013). In this chapter, we describe methodologies of the screening and synthesis of macrocyclic peptides as inhibitors, as well as the purification, crystallization, and structure determination of the complexes of the MATE-type multidrug exporter with its inhibitors.

Key words

Multidrug resistance Multidrug exporter Transporter Membrane proteins X-ray crystallography Structural analysis Macrocyclic peptide Inhibitors RaPID system 

References

  1. 1.
    Dawson RJP, Locher KP (2006) Structure of a bacterial multidrug ABC transporter. Nature 443:180–185. https://doi.org/10.1038/nature05155 CrossRefPubMedGoogle Scholar
  2. 2.
    Murakami S, Nakashima R, Yamashita E et al (2006) Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature 443:173–179. https://doi.org/10.2142/biophys.47.309 CrossRefPubMedGoogle Scholar
  3. 3.
    Brown MH, Paulsen IT, Skurray RA (1999) The multidrug efflux protein NorM is a prototype of a new family of transporters. Mol Microbiol 31:394–395. https://doi.org/10.1046/j.1365-2958.1999.01162.x CrossRefPubMedGoogle Scholar
  4. 4.
    He G, Kuroda T, Mima T et al (2004) An H+-coupled multidrug efflux pump, PmpM, a member of the MATE family of transporters, from Pseudomonas aeruginosa. J Bacteriol 186:262–265. https://doi.org/10.1128/JB.186.1.262 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kaatz GW, Mcaleese F, Seo SM (2005) Multidrug resistance in Staphylococcus aureus due to overexpression of a novel multidrug and toxin extrusion (MATE) transport protein. Antimicrob Agents Chmother 49:1857–1864. https://doi.org/10.1128/AAC.49.5.1857 CrossRefGoogle Scholar
  6. 6.
    McAleese F, Petersen P, Ruzin A et al (2005) A novel MATE family efflux pump contributes to the reduced susceptibility of laboratory-derived Staphylococcus aureus mutants to tigecycline. Antimicrob Agents Chemother 49:1865–1871. https://doi.org/10.1128/AAC.49.5.1865-1871.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Nakashima R, Sakurai K, Yamasaki S et al (2013) Structural basis for the inhibition of bacterial multidrug exporters. Nature 500:102–106. https://doi.org/10.1038/nature12300 CrossRefPubMedGoogle Scholar
  8. 8.
    He X, Szewczyk P, Karyakin A et al (2010) Structure of a cation-bound multidrug and toxic compound extrusion transporter. Nature 467:991–994. https://doi.org/10.1038/nature09408 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Lu M, Symersky J, Radchenko M et al (2013) Structures of a Na+-coupled, substrate-bound MATE multidrug transporter. Proc Natl Acad Sci U S A 110:2099–2104. https://doi.org/10.1073/pnas.1219901110 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lu M, Radchenko M, Symersky J et al (2013) Structural insights into H+-coupled multidrug extrusion by a MATE transporter. Nat Struct Mol Biol 20:1310–1317. https://doi.org/10.1038/nsmb.2687 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Radchenko M, Symersky J, Nie R, Lu M (2015) Structural basis for the blockade of MATE multidrug efflux pumps. Nat Commun 6:7995. https://doi.org/10.1038/ncomms8995 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Mousa JJ, Yang Y, Tomkovich S et al (2016) MATE transport of the E. coli-derived genotoxin colibactin. Nat Microbiol 1:15009. https://doi.org/10.1038/nmicrobiol.2015.9 CrossRefPubMedGoogle Scholar
  13. 13.
    Tanaka Y, Hipolito CJ, Maturana AD et al (2013) Structural basis for the drug extrusion mechanism by a MATE multidrug transporter. Nature 496:247–251. https://doi.org/10.1038/nature12014 CrossRefPubMedGoogle Scholar
  14. 14.
    Hipolito CJ, Tanaka Y, Katoh T et al (2013) A macrocyclic peptide that serves as a cocrystallization ligand and inhibits the function of a MATE family transporter. Molecules 18:10514–10530. https://doi.org/10.3390/molecules180910514 CrossRefPubMedGoogle Scholar
  15. 15.
    Roberts RW, Szostak JW (1997) RNA-peptide fusions for the in vitro selection of peptides and proteins. Proc Natl Acad Sci U S A 94:12297–12302. https://doi.org/10.1073/pnas.94.23.12297 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Nemoto N, Miyamoto-Sato E, Husimi Y, Yanagawa H (1997) In vitro virus: bonding of mRNA bearing puromycin at the 3′-terminal end to the C-terminal end of its encoded protein on the ribosome in vitro. FEBS Lett 414:405–408. https://doi.org/10.1016/S0014-5793(97)01026-0 CrossRefPubMedGoogle Scholar
  17. 17.
    Shimizu Y, Inoue A, Tomari Y et al (2001) Cell-free translation reconstituted with purified components. Nat Biotechnol 19:751–755. https://doi.org/10.1038/90802 CrossRefPubMedGoogle Scholar
  18. 18.
    Shimizu Y, Kanamori T, Ueda T (2005) Protein synthesis by pure translation systems. Methods 36:299–304. https://doi.org/10.1016/j.ymeth.2005.04.006 CrossRefPubMedGoogle Scholar
  19. 19.
    Landau EM, Rosenbusch JP (1996) Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc Natl Acad Sci U S A 93:14532–14535. https://doi.org/10.1073/pnas.93.25.14532 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Caffrey M, Cherezov V (2009) Crystallizing membrane proteins for structure-function studies using lipidic mesophases. Nat Protoc 4:706–731. https://doi.org/10.1007/978-94-007-6232-9-4 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hirata K, Kawano Y, Ueno G et al (2013) Achievement of protein micro-crystallography at SPring-8 beamline BL32XU. J Phys Conf Ser 425:012002. https://doi.org/10.1088/1742-6596/425/1/012002 CrossRefGoogle Scholar
  22. 22.
    Flot D, Mairs T, Giraud T et al (2010) The ID23-2 structural biology microfocus beamline at the ESRF. J Synchrotron Radiat 17:107–118. https://doi.org/10.1107/S0909049509041168 CrossRefPubMedGoogle Scholar
  23. 23.
    Xu H, Smith AB, Sahinidis NV, Weeks CM (2008) SnB version 2.3: triplet sieve phasing for centrosymmetric structures. J Appl Crystallogr 41:644–646. https://doi.org/10.1107/S0021889808007966 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Vonrhein C, Blanc E, Roversi P, Bricogne G (2007) Automated structure solution with autoSHARP. Methods Mol Biol 364:215–230. https://doi.org/10.1385/1-59745-266-1:215 PubMedGoogle Scholar
  25. 25.
    Eswar N, Webb B, Marti-Renom MA et al (2007) Comparative protein structure modeling using MODELLER. Curr Protoc Protein Sci. https://doi.org/10.1002/0471140864.ps0209s50
  26. 26.
    Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr Sect D Biol Crystallogr 66:486–501. https://doi.org/10.1107/S0907444910007493 CrossRefGoogle Scholar
  27. 27.
    Adams PD, Afonine PV, Bunkóczi G et al (2010) PHENIX: a comprehensive python-based system for macromolecular structure solution. Acta Crystallogr Sect D Biol Crystallogr 66:213–221. https://doi.org/10.1107/S0907444909052925 CrossRefGoogle Scholar
  28. 28.
    Smart OS, TO W, Flensburg C et al (2012) Exploiting structure similarity in refinement: automated NCS and target-structure restraints in BUSTER. Acta Crystallogr Sect D Biol Crystallogr 68:368–380. https://doi.org/10.1107/S0907444911056058 CrossRefGoogle Scholar
  29. 29.
    McCoy AJ, Grosse-Kunstleve RW, Adams PD et al (2007) Phaser crystallographic software. J Appl Crystallogr 40:658–674. https://doi.org/10.1107/S0021889807021206 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kawate T, Gouaux E (2006) Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure 14:673–681. https://doi.org/10.1016/j.str.2006.01.013 CrossRefPubMedGoogle Scholar
  31. 31.
    Hattori M, Hibbs RE, Gouaux E (2012) A fluorescence-detection size-exclusion chromatography-based thermostability assay for membrane protein precrystallization screening. Structure 20:1293–1299. https://doi.org/10.1016/j.str.2012.06.009 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Goto Y, Katoh T, Suga H (2011) Flexizymes for genetic code reprogramming. Nat Protoc 6:779–790. https://doi.org/10.1038/nprot.2011.331 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Tsukasa Kusakizako
    • 1
  • Yoshiki Tanaka
    • 2
  • Christopher J. Hipolito
    • 3
    • 4
  • Hiroaki Suga
    • 3
  • Osamu Nureki
    • 1
  1. 1.Department of Biological Sciences, Graduate School of ScienceThe University of TokyoTokyoJapan
  2. 2.Department of Systems Biology, Graduate School of Biological SciencesNara Institute of Science and TechnologyNaraJapan
  3. 3.Department of Chemistry, Graduate School of ScienceThe University of TokyoTokyoJapan
  4. 4.Faculty of MedicineUniversity of TsukubaTsukubaJapan

Personalised recommendations