High-Throughput Flow Cytometry Screening of Multidrug Efflux Systems

  • Mark K. Haynes
  • Matthew Garcia
  • Ryan Peters
  • Anna Waller
  • Pietro Tedesco
  • Oleg Ursu
  • Cristian G. Bologa
  • Radleigh G. Santos
  • Clemencia Pinilla
  • Terry H. Wu
  • Julie A. Lovchik
  • Tudor I. Oprea
  • Larry A. Sklar
  • George P. Tegos
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1700)

Abstract

The resistance nodulation cell division (RND) family of proteins are inner membrane transporters that associate with periplasmic adaptor proteins and outer membrane porins to affect substrate transport from the cytosol and periplasm in Gram-negative bacteria. Various structurally diverse compounds are substrates of RND transporters. Along with their notable role in antibiotic resistance, these transporters are essential for niche colonization, quorum sensing, and virulence as well as for the removal of fatty acids and bile salts. As such, RNDs are an attractive target for antimicrobial development. However, while enhancing the utility of antibiotics with an RND inhibitor is an appealing concept, only a small core of chemotypes has been identified as efflux pump inhibitors (EPIs). Thus, our key objective is the development and validation of an efflux profiling and discovery strategy for RND model systems. Here we describe a flow cytometric dye accumulation assay that uses fluorescein diacetate (FDA) to interrogate the model Gram-negative pathogens Escherichia coli, Franscisella tularensis, and Burkholderia pseudomallei. Fluorochrome retention is increased in the presence of known efflux inhibitors and in RND deletion strains. The assay can be used in a high-throughput format to evaluate efflux of dye-substrate candidates and to screen chemical libraries for novel EPIs. Triaged compounds that inhibit efflux in pathogenic strains are tested for growth inhibition and antibiotic potentiation using microdilution culture plates in a select agent Biosafety Level-3 (BSL3) environment. This combined approach demonstrates the utility of flow cytometric analysis for efflux activity and provides a useful platform in which to characterize efflux in pathogenic Gram-negative bacteria. Screening small molecule libraries for novel EPI candidates offers the potential for the discovery of new classes of antibacterial compounds.

Key words

Flow cytometry RND efflux transporters Antibiotic enhancement Biological Warfare bacterial agents Burkholderia sp. Francisella sp. 

Notes

Acknowledgments

This work was supported by The Department of Threat and Reduction Agency (HDTRA1-13-C-0005 to G.P.T. and L.A.S.) and The UNM Clinical and Translational Science Center (UL1TR001449 to L.A.S.). The authors thank the Italian Research Council for a Fellowship to Pietro Tedesco.

References

  1. 1.
    Piddock LJ (2006) Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin Microbiol Rev 19:382–402CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Piddock LJ (2006) Multidrug-resistance efflux pumps? not just for resistance. Nat Rev Microbiol 4:629–636CrossRefPubMedGoogle Scholar
  3. 3.
    Tikhova EB, Zgurskaya HI (2004) AcrA, AcrB and TolC of Escherichia coli form a stable intermembrane multi drug efflux complex. J Biol Chem 279:32116–32124CrossRefGoogle Scholar
  4. 4.
    Symmons MF, Bokma E, Koronakis E et al (2009) The assembled structure of a complete tripartite bacterial multidrug efflux pump. Proc Natl Acad Sci U S A 106:7173–7178CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Yu EW, Aires JR, McDermott G et al (2005) A periplasmic drug-binding site of the AcrB multidrug efflux pump: a crystallographic and site-directed mutagenesis study. J Bacteriol 87:6804–6815CrossRefGoogle Scholar
  6. 6.
    Murakami S, Nakashima R, Yamashita E et al (2006) Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature 14:173–179CrossRefGoogle Scholar
  7. 7.
    Nakashima R, Sakurai K, Yamasaki S et al (2011) Structures of the multidrug exporter AcrB reveal a proximal multisite drug-binding pocket. Nature 27:565–569Google Scholar
  8. 8.
    Eicher T, Cha HJ, Seeger MA et al (2012) Transport of drugs by the multidrug transporter AcrB involves an access and a deep binding pocket that are separated by a switch-loop. Proc Natl Acad Sci U S A 10:5687–5692CrossRefGoogle Scholar
  9. 9.
    Schell M, Zhao P, Wells L (2011) Outer membrane proteome of Burkholderia pseudomallei and Burkholderia mallei from diverse growth conditions. J Proteome Res 10:2417–2424CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Middlemiss JK, Poole K (2004) Differential impact of MexB mutations on substrate selectivity of the MexAB-OprM multidrug efflux pump of Pseudomonas aeruginosa. J Bacteriol 186:1258–1269CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Mima T, Schweizer HP (2010) The BpeAB-OprB efflux pump of Burkholderia pseudomallei 1026b does not play a role in quorum sensing, virulence factor production, or extrusion of aminoglycosides but is a broad-spectrum drug efflux system. Antimicrob Agents Chemother 54:3113–3120CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Gil H, Platz GJ, Forestal CA et al (2006) Deletion of TolC orthologs in Francisella tularensis identifies roles in multidrug resistance and virulence. Proc Natl Acad Sci U S A 22:12897–12902CrossRefGoogle Scholar
  13. 13.
    Sandhu P, Akhter Y (2015) The internal gene duplication and interrupted coding sequences in the MmpL genes of Mycobacterium tuberculosis: towards understanding the multidrug transport in an evolutionary perspective. Int J Med Microbiol 305:413–423CrossRefPubMedGoogle Scholar
  14. 14.
    Sulavik MC, Houseweart C, Cramer C et al (2001) Antibiotic susceptibility profiles of Escherichia coli strains lacking multidrug efflux pump genes. Antimicrob Agents Chemother 45:1126–1136CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Lomovskaya O, Warren MS, Lee A et al (2001) Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonas aeruginosa: novel agents for combination therapy. Antimicrob Agents Chemother 45:105–116CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kern WV, Steinke P, Schumacher A et al (2006) Effect of 1-(1-naphthylmethyl)-piperazine, a novel putative efflux pump inhibitor, on antimicrobial drug susceptibility in clinical isolates of Escherichia coli. J Antimicrob Chemother 57:339–343CrossRefPubMedGoogle Scholar
  17. 17.
    Rodrigues L, Wagner D, Viveiros M et al (2008) Thioridazine and chlorpromazine inhibition of ethidium bromide efflux in Mycobacterium avium and Mycobacterium smegmatis. J Antimicrob Chemother 61:1076–1082CrossRefPubMedGoogle Scholar
  18. 18.
    Viveiros M, Martins A, Paixão L (2008) Demonstration of intrinsic efflux activity of Escherichia coli K-12 AG100 by an automated ethidium bromide method. Int J Antimicrob Agents 31:458–462CrossRefPubMedGoogle Scholar
  19. 19.
    Coldham NG, Webber M, Woodward MJ et al (2010) A 96-well plate fluorescence assay for assessment of cellular permeability and active efflux in Salmonella enterica serovar Typhimurium and Escherichia coli. J Antimicrob Chemother 65:1655–1663CrossRefPubMedGoogle Scholar
  20. 20.
    Bohnert JA, Karamian B, Nikaido H (2010) Optimized Nile Red efflux assay of AcrAB-TolC multidrug efflux system shows competition between substrates. Antimicrob Agents Chemother 54:3770–3775CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Matsumoto Y, Hayama K, Sakakihara S et al (2011) Evaluation of multidrug efflux pump inhibitors by a new method using microfluidic channels. PLoS One 6:e18547CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Strouse JJ, Ivnitski-Steele I, Khawaja HM et al (2013) A selective ATP-binding cassette subfamily G member 2 efflux inhibitor revealed via high-throughput flow cytometry. J Biomol Screen 18:26–38CrossRefPubMedGoogle Scholar
  23. 23.
    Strouse JJ, Ivnitski-Steele I, Waller A et al (2013) Fluorescent substrates for flow cytometric evaluation of efflux inhibition in ABCB1, ABCC1, and ABCG2 transporters. Anal Biochem 1:77–87CrossRefGoogle Scholar
  24. 24.
    Hoel DG (1987) Statistical aspects of chemical mixtures. In: Vouk VB, Butler GC, Upton AC, Parke DV, Asher SC (eds) Methods for assessing the effects of mixtures of chemicals. Wiley, New York, pp 369–377Google Scholar
  25. 25.
    Baba T, Ara T, Hasegawa M et al (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:2006.0008CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Propst KL, Mima T, Choi KH et al (2010) A Burkholderia pseudomallei ΔpurM mutant is avirulent in immunocompetent and immunodeficient animals: candidate strain for exclusion from select-agent lists. Infect Immun 78:3136–3143CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Edwards BS, Young SM, Oprea TI et al (2006) Biomolecular screening of formylpeptide receptor ligands with a sensitive, quantitative, high-throughput flow cytometry platform. Nat Protoc 1:59–66CrossRefPubMedGoogle Scholar
  28. 28.
    Lamping E, Monk BC, Niimi K et al (2007) Characterization of three classes of membrane proteins involved in fungal azole resistance by functional hyperexpression in Saccharomyces cerevisiae. Eukaryot Cell 6:1150–1165CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Tallarida RJ (2006) An overview of drug combination analysis with isobolograms. J Pharmacol Exp Ther 6:1–7CrossRefGoogle Scholar
  30. 30.
    Renau T, Léger R, Flame EM et al (1999) Inhibitors of efflux pumps in Pseudomonas aeruginosa potentiate the activity of the fluoroquinolone antibacterial levofloxacin. J Med Chem 42:4928–4931CrossRefPubMedGoogle Scholar
  31. 31.
    Yoshida K, Nakayama K, Ohtsuka M et al (2007) MexAB-OprM specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 7: Highly soluble and in vivo active quaternary ammonium analogue D13-9001, a potential preclinical candidate. Bioorg Med Chem 15:7087–7097CrossRefPubMedGoogle Scholar
  32. 32.
    Nakayama K, Ishida Y, Ohtsuka M et al (2003) MexAB-OprM-specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 1: Discovery and early strategies for lead optimization. Bioorg Med Chem 13:4201–4204CrossRefGoogle Scholar
  33. 33.
    Lee MD, Galazzo JL, Staley AL et al (2001) Microbial fermentation-derived inhibitors of efflux-pump-mediated drug resistance. Farmaco 56:81–85CrossRefPubMedGoogle Scholar
  34. 34.
    Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf Model 50:742–754CrossRefPubMedGoogle Scholar
  35. 35.
    Clinical Laboratory Standards Institute (2007) M7-A7. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard, 7th edn. CLSI, Wayne, PAGoogle Scholar
  36. 36.
    Zhang J-H, Chung TDY, Oldenburg KR (1999) A simple statistical parameter for use in evaluation and validation of high throughput assays. J Biomol Screen 4:67–73CrossRefPubMedGoogle Scholar
  37. 37.
    Kurinčič M, Klančnik A, Smole-Možina S (2012) Epigallocatechin gallate as a modulator of Campylobacter resistance to macrolide antibiotics. Int J Antimicrob Agents 40:467–471CrossRefPubMedGoogle Scholar
  38. 38.
    Eto D, Watanabe K, Saeki H et al (2013) Divergent effects of desferrioxamine on bacterial growth and characteristics. J Antibiot 66:199–203CrossRefPubMedGoogle Scholar
  39. 39.
    Coban AY, Tanriverdi-Cayci Y, Erturan Z et al (2009) Effects of efflux pump inhibitors phenyl-arginine-beta-naphthylamide and 1-(1-naphthylmethyl)-piperazine on the antimicrobial susceptibility of Pseudomonas aeruginosa isolates from cystic fibrosis patients. J Chemother 21:592–594CrossRefPubMedGoogle Scholar
  40. 40.
    Schumacher A, Steinke P, Bohnert JA et al (2006) Effect of 1-(1-naphthylmethyl)-piperazine, a novel putative efflux pump inhibitor, on antimicrobial drug susceptibility in clinical isolates of Enterobacteriaceae other than Escherichia coli. J Antimicrob Chemother 57:344–348CrossRefPubMedGoogle Scholar
  41. 41.
    Cirioni O, Giacometti A, Scalise G (1997) In-vitro activity of atovaquone, sulphamethoxazole and dapsone alone and combined with inhibitors of dihydrofolate reductase and macrolides against Pneumocystis carinii. J Antimicrob Chemother 39:45–51CrossRefPubMedGoogle Scholar
  42. 42.
    Alsterholm M, Karami N, Faergemann J (2010) Antimicrobial activity of topical skin pharmaceuticals – an in vitro study. Acta Derm Venereol 90:239–245CrossRefPubMedGoogle Scholar
  43. 43.
    Sun W, Park YD, Sugui JA et al (2013) Rapid identification of antifungal compounds against Exserohilum rostratum using high throughput drug repurposing screens. PLoS One 8:e70506CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Hansen T, Nejsum P, Friis C et al (2014) Trichuris suis and Oesophagostomum dentatum show different sensitivity and accumulation of fenbendazole, albendazole and levamisole in vitro. PLoS Negl Trop Dis 8:e2752CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Mark K. Haynes
    • 1
    • 2
  • Matthew Garcia
    • 1
    • 2
  • Ryan Peters
    • 3
  • Anna Waller
    • 1
    • 2
  • Pietro Tedesco
    • 4
    • 5
  • Oleg Ursu
    • 6
  • Cristian G. Bologa
    • 6
  • Radleigh G. Santos
    • 7
  • Clemencia Pinilla
    • 8
  • Terry H. Wu
    • 3
  • Julie A. Lovchik
    • 3
  • Tudor I. Oprea
    • 6
  • Larry A. Sklar
    • 1
    • 2
  • George P. Tegos
    • 9
    • 10
  1. 1.Center for Molecular DiscoveryUniversity of New Mexico School of MedicineAlbuquerqueUSA
  2. 2.Department of PathologyUniversity of New Mexico School of MedicineAlbuquerqueUSA
  3. 3.Center for Infectious Disease and Immunity, Department of Internal MedicineUniversity of New Mexico School of MedicineAlbuquerqueUSA
  4. 4.Institute of Protein BiochemistryNational Research CouncilNaplesItaly
  5. 5.Department of Chemical Sciences and School of Biotechnological SciencesUniversity of NaplesNaplesItaly
  6. 6.Division of Translational Informatics, Department of Internal MedicineUniversity of New Mexico School of MedicineAlbuquerqueUSA
  7. 7.Torrey Pines Institute for Molecular StudiesPort St LucieUSA
  8. 8.Torrey Pines Institute for Molecular StudiesSan DiegoUSA
  9. 9.Department of DermatologyHarvard Medical SchoolBostonUSA
  10. 10.Wellman Center for PhotomedicineMassachusetts General HospitalBostonUSA

Personalised recommendations