Advertisement

Study of the Expression of Bacterial Multidrug Efflux Pumps in Anaerobic Conditions

  • Jingjing Sun
  • Ziqing Deng
  • Danny Ka Chun Fung
  • Aixin Yan
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1700)

Abstract

Bacterial multidrug efflux pumps belong to a class of membrane transporter proteins that dedicate to the extrusion of a diverse range of substances out of cells including all classes of currently available antibiotics. They constitute an important mechanism of bacterial antibiotic and multidrug resistance. Since many ecological niches of bacteria and the infection foci in animal host display low oxygen tension under which condition bacterial pathogens undergo fundamental changes on their metabolic modes, it is necessary to study the expression profiles of drug efflux pumps under these physiologically and clinically relevant conditions. In this chapter, we first introduce procedures to culture bacteria under anaerobic conditions, which is achieved using screw-capped Pyrex culture tubes without agitation. We then introduce β-galactosidase activity assay using promoter-lacZ (encoding the β-galactosidase enzyme) fusion to measure the expression of efflux pumps at transcriptional level, and Western blot using chromosomal FLAG-tagged construct to examine the expression of these proteins at translational level. Applications of these gene expression studies to reveal the regulatory mechanisms of efflux genes expression as well as their physiological functions are also discussed.

Key words

Multidrug efflux pump Multidrug resistance Anaerobiosis β-galactosidase activity assay SDS-PAGE Western blot 

Notes

Acknowledgment

We are grateful to Prof. Kunihiko Nishino (Institute of Scientific and Industrial Research, Osaka University) for the pNN387 vector and the PgadE-lacZ strain. The studies are supported by the Hong Kong University Grants Council General Research Fund (HKU 17142316) and the Health and Medical Research Fund (HMRF) Hong Kong (No. 13120662) to A.Y.

References

  1. 1.
    Nikaido H (1998) Multiple antibiotic resistance and efflux. Curr Opin Microbiol 1:516–523CrossRefPubMedGoogle Scholar
  2. 2.
    Marteyn B, West NP, Browning DF et al (2010) Modulation of Shigella virulence in response to available oxygen in vivo. Nature 465:355–358CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Høiby N, Bjarnsholt T, Givskov M et al (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35:322–332CrossRefPubMedGoogle Scholar
  4. 4.
    Sannasiddappa TH, Hood GA, Hanson KJ et al (2015) Staphylococcus aureus MnhF mediates cholate efflux and facilitates survival under human colonic conditions. Infect Immun 83:2350–2357CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Urbán E, Nagy E, Pál T et al (2007) Activities of four frog skin-derived antimicrobial peptides (temporin-1DRa, temporin-1Va and the melittin-related peptides AR-23 and RV-23) against anaerobic bacteria. Int J Antimicrob Agents 29:317–321CrossRefPubMedGoogle Scholar
  6. 6.
    Uysal B, Yasar M, Ersoz N et al (2010) Efficacy of hyperbaric oxygen therapy and medical ozone therapy in experimental acute necrotizing pancreatitis. Pancreas 39:9–15CrossRefPubMedGoogle Scholar
  7. 7.
    Zhang Y, Xiao M, Horiyama T et al (2011) The multidrug efflux pump MdtEF protects against nitrosative damage during the anaerobic respiration in Escherichia coli. J Biol Chem 286:26576–26584CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Schaible B, Taylor CT, Schaffer K (2012) Hypoxia increases antibiotic resistance in Pseudomonas aeruginosa through altering the composition of multidrug efflux pumps. Antimicrob Agents Chemother 56:2114–2118CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Schwartz KT, Carleton JD, Quillin SJ et al (2012) Hyperinduction of host beta interferon by a Listeria monocytogenes strain naturally overexpressing the multidrug efflux pump MdrT. Infect Immun 80:1537–1545CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bradford PA, Sands DTW, Petersen PJ (2005) In vitro activity of tigecycline against isolates from patients enrolled in phase 3 clinical trials of treatment for complicated skin and skin-structure infections and complicated intra-abdominal infections. Clin Infect Dis 41(Supplement 5):S315–S332CrossRefPubMedGoogle Scholar
  11. 11.
    Kalia NP, Mahajan P, Mehra R et al (2012) Capsaicin, a novel inhibitor of the NorA efflux pump, reduces the intracellular invasion of Staphylococcus aureus. J Antimicrob Chemother 67:2401–2408CrossRefPubMedGoogle Scholar
  12. 12.
    Fung DKC, Lau WY, Chan WT et al (2013) Copper efflux is induced during anaerobic amino acid limitation in Escherichia coli to protect iron-sulfur cluster enzymes and biogenesis. J Bacteriol 195:4556–4568CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Horiyama T, Nishino K (2014) AcrB, AcrD, and MdtABC multidrug efflux systems are involved in enterobactin export in Escherichia coli. PLoS One 9:e108642CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    de Sarrau B, Clavel T, Clerté C et al (2012) Influence of anaerobiosis and low temperature on Bacillus cereus growth, metabolism, and membrane properties. Appl Environ Microbiol 78:1715–1723CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Yang Y, Xiang Y, Xia C et al (2014) Physiological and electrochemical effects of different electron acceptors on bacterial anode respiration in bioelectrochemical systems. Bioresour Technol 164:270–275CrossRefPubMedGoogle Scholar
  16. 16.
    Osman D, Cavet JS (2008) Copper homeostasis in bacteria. Adv Appl Microbiol 65:217–247CrossRefPubMedGoogle Scholar
  17. 17.
    Sun J, Deng Z, Yan A (2014) Bacterial multidrug efflux pumps: Mechanisms, physiology and pharmacological exploitations. Biochem Biophys Res Commun 453:254–267CrossRefPubMedGoogle Scholar
  18. 18.
    Kirchner S, Fothergill JL, Wright EA et al (2012) Use of artificial sputum medium to test antibiotic efficacy against Pseudomonas aeruginosa in conditions more relevant to the cystic fibrosis lung. J Vis Exp 64:3857Google Scholar
  19. 19.
    Pu Y, Zhao Z, Li Y et al (2016) Enhanced efflux activity facilitates drug tolerance in dormant bacterial cells. Mol Cell 62:284–294CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Deng Z, Shan Y, Pan Q et al (2013) Anaerobic expression of the gadE-mdtEF multidrug efflux operon is primarily regulated by the two-component system ArcBA through antagonizing the H-NS mediated repression. Front Microbiol 4:194PubMedPubMedCentralGoogle Scholar
  21. 21.
    Yan A, Kiley P (2009) Techniques to isolate O2-sensitive proteins: [4Fe-4S]-FNR as an example. Methods Enzymol 463:787–805CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Jingjing Sun
    • 1
  • Ziqing Deng
    • 1
  • Danny Ka Chun Fung
    • 1
    • 2
  • Aixin Yan
    • 1
    • 3
  1. 1.School of Biological SciencesThe University of Hong KongPokfulamHong Kong SAR
  2. 2.Department of BacteriologyUniversity of Wisconsin-MadisonMadisonUSA
  3. 3.Institute of Scientific and Industrial ResearchOsaka UniversityIbarakiJapan

Personalised recommendations