Advertisement

MicroRNA, Noise, and Gene Expression Regulation

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1699)

Abstract

Gene regulatory network that determines the cellular functions exhibits stochastic fluctuations, or “noise,” in different layers. Noise has begun to be appreciated for many previously unrecognized functions in important cellular activities. In fact, molecular noise is unavoidable in both microbial and eukaryotic cells, the feedback system is established evolutionally to reduce noise or optimize the noise for cellular homeostasis. The small noncoding RNAs, particularly, microNRAs, post-transcriptionally and negatively regulate gene expressions. MicroRNAs function as a novel layer to buffer noise level, and stabilize mRNA and protein level to maintain normal cellular function. Furthermore, the changing of microRNA expression levels may increase the stochastic fluctuation leading to abnormal cellular function, even diseases.

Key words

MicroRNAs Noise Gene regulatory network Stochastic fluctuation 

References

  1. 1.
    Friedlander MR, Chen W, Adamidi C, Maaskola J, Einspanier R, Knespel S, Rajewsky N (2008) Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol 26:407–415CrossRefPubMedGoogle Scholar
  2. 2.
    Raser JM, O'Shea EK (2004) Control of stochasticity in eukaryotic gene expression. Science 304:1811–1814CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Raser JM, O'Shea EK (2005) Noise in gene expression: origins, consequences, and control. Science 309:2010–2013CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Chalancon G, Ravarani CN, Balaji S, Martinez-Arias A, Aravind L, Jothi R, Babu MM (2012) Interplay between gene expression noise and regulatory network architecture. Trends Genet 28:221–232CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Eldar A, Elowitz MB (2010) Functional roles for noise in genetic circuits. Nature 467:167–173CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Chang HH, Oh PY, Ingber DE, Huang S (2006) Multistable and multistep dynamics in neutrophil differentiation. BMC Cell Biol 7:11CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Chang HH, Hemberg M, Barahona M, Ingber DE, Huang S (2008) Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature 453:544–547CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Fraser HB, Hirsh AE, Giaever G, Kumm J, Eisen MB (2004) Noise minimization in eukaryotic gene expression. PLoS Biol 2:e137CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Swain PS, Elowitz MB, Siggia ED (2002) Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc Natl Acad Sci U S A 99:12795–12800CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Swain PS (2004) Efficient attenuation of stochasticity in gene expression through post-transcriptional control. J Mol Biol 344:965–976CrossRefPubMedGoogle Scholar
  11. 11.
    Bundschuh R, Hayot F, Jayaprakash C (2003) The role of dimerization in noise reduction of simple genetic networks. J Theor Biol 220:261–269CrossRefPubMedGoogle Scholar
  12. 12.
    Jia Y, Liu W, Li A, Yang L, Zhan X (2009) Intrinsic noise in post-transcriptional gene regulation by small non-coding RNA. Biophys Chem 143:60–69CrossRefPubMedGoogle Scholar
  13. 13.
    Gironella M, Seux M, Xie MJ, Cano C, Tomasini R, Gommeaux J, Garcia S, Nowak J, Yeung ML, Jeang KT et al (2007) Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proc Natl Acad Sci U S A 104:16170–16175CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Wang X, Li Y, Xu X, Wang YH (2010) Toward a system-level understanding of microRNA pathway via mathematical modeling. Biosystems 100:31–38Google Scholar
  15. 15.
    Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466:835–840CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Herranz H, Cohen SM (2010) MicroRNAs and gene regulatory networks: managing the impact of noise in biological systems. Genes Dev 24:1339–1344CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Tomasetti C, Vogelstein B (2015) Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 347:78–81CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Swanton C, Beck S (2014) Epigenetic noise fuels cancer evolution. Cancer Cell 26:775–776CrossRefPubMedGoogle Scholar
  19. 19.
    Wu S, Powers S, Zhu W, Hannun YA (2016) Substantial contribution of extrinsic risk factors to cancer development. Nature 529:43–47CrossRefPubMedGoogle Scholar
  20. 20.
    Capp JP (2010) Noise-driven heterogeneity in the rate of genetic-variant generation as a basis for evolvability. Genetics 185:395–404CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Han R, Huang G, Wang Y, Xu Y, Hu Y, Jiang W, Wang T, Xiao T, Zheng D (2016) Increased gene expression noise in human cancers is correlated with low p53 and immune activities as well as late stage cancer. Oncotarget 7:72011–72020PubMedPubMedCentralGoogle Scholar
  22. 22.
    Wu W, Cao W, Chan JA (2013) Regulation of MicroRNAs for potential cancer therapeutics: the paradigm shift from pathways to perturbation of gene regulatory networks. In: Lopez-Camarillo C, Marchat LA (eds) MicroRNAs in cancer. CRC Press, Boca Raton, FL, pp 364–386CrossRefGoogle Scholar
  23. 23.
    Grigolon S, Di Patti F, De Martino A, Marinari E (2016) Noise processing by microRNA-mediated circuits: the incoherent feed-forward loop, revisited. Heliyon 2:e00095CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Iorio MV, Piovan C, Croce CM (1799) Interplay between microRNAs and the epigenetic machinery: an intricate network. Biochim Biophys Acta 2010:694–701Google Scholar
  25. 25.
    Volinia S, Galasso M, Costinean S, Tagliavini L, Gamberoni G, Drusco A, Marchesini J, Mascellani N, Sana ME, Abu Jarour R et al (2010) Reprogramming of miRNA networks in cancer and leukemia. Genome Res 20:589–599CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Wilbert ML, Yeo GW (2011) Genome-wide approaches in the study of microRNA biology. Wiley Interdiscip Rev Syst Biol Med 3:491–512CrossRefPubMedGoogle Scholar
  27. 27.
    Kim JK, Kolodziejczyk AA, Ilicic T, Teichmann SA, Marioni JC (2015) Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression. Nat Commun 6:8687CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.Department of Medicine, Helen Diller Family Comprehensive Cancer CenterUniversity of California in San FranciscoSan FranciscoUSA

Personalised recommendations