Advertisement

MicroRNAs Change the Landscape of Cancer Resistance

  • Jun ZhuEmail author
  • Wei Zhu
  • Wei Wu
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1699)

Abstract

One of the major challenges in the cancer treatment is the development of drug resistance. It represents a major obstacle to curing cancer with constrained efficacy of both conventional chemotherapy and targeted therapies, even recent immune checkpoint blockade therapy. Deciphering the mechanisms of resistance is critical to further understanding the multifactorial pathways involved, and developing more specific targeted treatments. To date, numerous studies have reported the potential role of microRNAs (miRNAs) in the resistance to various cancer treatments. MicroRNAs are a family of small noncoding RNAs that regulate gene expression by sequence-specific targeting of mRNAs causing translational repression or mRNA degradation. More than 1200 validated human miRNAs have been identified in human genome. While one miRNA can regulate hundreds of targets, a single target can also be affected by multiple miRNAs. Evidence suggests that dysregulation of specific miRNAs may be involved in the acquisition of resistance, thereby modulating the sensitivity of cancer cells to treatment. Therefore, manipulation of miRNAs may be an attractive strategy for more effective individualized therapies through reprograming resistant network in cancer cells.

Key words

Cancer resistance MicroRNAs Drug persistent cells Residual disease Epigenome 

References

  1. 1.
    Stratton MR, Campbell PJ, Futreal PA (2009) The cancer genome. Nature 458:719–724CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW (2013) Cancer genome landscapes. Science 339:1546–1558CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Duesberg P, Mandrioli D, McCormack A, Nicholson JM (2011) Is carcinogenesis a form of speciation? Cell Cycle 10:2100–2114CrossRefPubMedGoogle Scholar
  4. 4.
    Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, Wedge DC, Nik-Zainal S, Martin S, Varela I, Bignell GR et al (2012) The landscape of cancer genes and mutational processes in breast cancer. Nature 486:400–404PubMedPubMedCentralGoogle Scholar
  5. 5.
    Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, Davies H, Teague J, Butler A, Stevens C et al (2007) Patterns of somatic mutation in human cancer genomes. Nature 446:153–158CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Wu W, Chan JA (2013) Understanding the role of long noncoding RNAs in the cancer genome. In: Wu W, Choudhry H (eds) Next generation sequencing in cancer research-decoding cancer genome, vol 1, 1st edn. Springer, New York, pp 199–215CrossRefGoogle Scholar
  7. 7.
    Zhang X, Marjani SL, Hu Z, Weissman SM, Pan X, Wu S (2016) Single-cell sequencing for precise cancer research: progress and prospects. Cancer Res 76:1305–1312CrossRefPubMedGoogle Scholar
  8. 8.
    Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455–2465CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Powles T, Eder JP, Fine GD, Braiteh FS, Loriot Y, Cruz C, Bellmunt J, Burris HA, Petrylak DP, Teng SL et al (2014) MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 515:558–562CrossRefPubMedGoogle Scholar
  11. 11.
    Bivona TG, Doebele RC (2016) A framework for understanding and targeting residual disease in oncogene-driven solid cancers. Nat Med 22:472–478CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Michelson S, Slate D (1989) Emergence of the drug-resistant phenotype in tumor subpopulations: a hybrid model. J Natl Cancer Inst 81:1392–1401CrossRefPubMedGoogle Scholar
  13. 13.
    Majidinia M, Yousefi B (2017) Breast tumor stroma: a driving force in the development of resistance to therapies. Chem Biol Drug Des 89(3):309–318CrossRefPubMedGoogle Scholar
  14. 14.
    Komarova N (2006) Stochastic modeling of drug resistance in cancer. J Theor Biol 239:351–366CrossRefPubMedGoogle Scholar
  15. 15.
    Ramirez M, Rajaram S, Steininger RJ, Osipchuk D, Roth MA, Morinishi LS, Evans L, Ji W, Hsu CH, Thurley K et al (2016) Diverse drug-resistance mechanisms can emerge from drug-tolerant cancer persister cells. Nat Commun 7:10690CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297CrossRefPubMedGoogle Scholar
  17. 17.
    Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294:862–864CrossRefPubMedGoogle Scholar
  18. 18.
    Wu W, Sun M, Zou GM, Chen J (2007) MicroRNA and cancer: current status and prospective. Int J Cancer 120(5):953–960CrossRefPubMedGoogle Scholar
  19. 19.
    He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ, Hammond SM (2005) A microRNA polycistron as a potential human oncogene. Nature 435:828–833CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854CrossRefPubMedGoogle Scholar
  21. 21.
    Wu W (2011) MicroRNA and cancer, Methods in molecular biology, vol 676. Springer, New YorkGoogle Scholar
  22. 22.
    Sato H, Shien K, Tomida S, Okayasu K, Suzawa K, Hashida S, Torigoe H, Watanabe M, Yamamoto H, Soh J et al (2017) Targeting the miR-200c/LIN28B axis in acquired EGFR-TKI resistance non-small cell lung cancer cells harboring EMT features. Sci Rep 7:40847CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Zhang B, Pan X, Anderson TA (2006) MicroRNA: a new player in stem cells. J Cell Physiol 209:266–269CrossRefPubMedGoogle Scholar
  24. 24.
    Wang V, Wu W (2009) MicroRNA-based therapeutics for cancer. BioDrugs 23:15–23CrossRefPubMedGoogle Scholar
  25. 25.
    Liu TC, Jin X, Wang Y, Wang K (2017) Role of epidermal growth factor receptor in lung cancer and targeted therapies. Am J Cancer Res 7:187–202PubMedPubMedCentralGoogle Scholar
  26. 26.
    Wang YS, Wang YH, Xia HP, Zhou SW, Schmid-Bindert G, Zhou CC (2012) MicroRNA-214 regulates the acquired resistance to gefitinib via the PTEN/AKT pathway in EGFR-mutant cell lines. Asian Pac J Cancer Prev 13:255–260CrossRefPubMedGoogle Scholar
  27. 27.
    Garofalo M, Romano G, Di Leva G, Nuovo G, Jeon YJ, Ngankeu A, Sun J, Lovat F, Alder H, Condorelli G et al (2011) EGFR and MET receptor tyrosine kinase-altered microRNA expression induces tumorigenesis and gefitinib resistance in lung cancers. Nat Med 18:74–82PubMedPubMedCentralGoogle Scholar
  28. 28.
    Garofalo M, Di Leva G, Romano G, Nuovo G, Suh SS, Ngankeu A, Taccioli C, Pichiorri F, Alder H, Secchiero P et al (2009) miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell 16:498–509CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Sharma SV, Lee DY, Li B, Quinlan MP, Takahashi F, Maheswaran S, McDermott U, Azizian N, Zou L, Fischbach MA et al (2010) A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141:69–80CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Heng HH, Bremer SW, Stevens JB, Ye KJ, Liu G, Ye CJ (2009) Genetic and epigenetic heterogeneity in cancer: a genome-centric perspective. J Cell Physiol 220:538–547CrossRefPubMedGoogle Scholar
  31. 31.
    Sahu N, Stephan JP, Cruz DD, Merchant M, Haley B, Bourgon R, Classon M, Settleman J (2016) Functional screening implicates miR-371-3p and peroxiredoxin 6 in reversible tolerance to cancer drugs. Nat Commun 7:12351CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Vinogradova M, Gehling VS, Gustafson A, Arora S, Tindell CA, Wilson C, Williamson KE, Guler GD, Gangurde P, Manieri W et al (2016) An inhibitor of KDM5 demethylases reduces survival of drug-tolerant cancer cells. Nat Chem Biol 12:531–538CrossRefPubMedGoogle Scholar
  33. 33.
    Wu W (2011) Modulation of microRNAs for potential cancer therapeutics. In: Wu W (ed) MicroRNA and cancer, Methods in molecular biology, vol 676, pp 59–70CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.Jiangsu Cancer HospitalNanjingChina
  2. 2.Department of OncologyFirst Affiliated Hospital of Nanjing Medical UniversityNanjingPR China
  3. 3.Department of Medicine, Helen Diller Family Comprehensive Cancer CenterUniversity of California in San FranciscoSan FranciscoUSA

Personalised recommendations