Angiogenesis Analysis by In Vitro Coculture Assays in Transwell Chambers in Ovarian Cancer

  • Ali Flores-Pérez
  • Dolores Gallardo Rincón
  • Erika Ruiz-García
  • Raquel Echavarria
  • Laurence A. Marchat
  • Elizbeth Álvarez-Sánchez
  • César López-CamarilloEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1699)


Angiogenesis is an important biological process in tumor growth and metastasis of tumor cells, and it has been associated with poor clinical outcomes in ovarian cancer. In vitro assays are useful tools for understanding the complex mechanisms of angiogenesis under a variety of conditions. Capillary-like formation and transwell migration assays are two of the most common techniques used in angiogenesis research. Here, we show an easy coculture model to study the role of microRNAs on angiogenesis that combines tube formation and cell migration assays. Recently, we reported that miR-204 is repressed in breast cancer and restoration in cancer cell lines results in angiogenesis inhibition. Here, we restored the expression of miR-204 by transfection of precursor molecule in the tumorigenic SKOV3 ovarian cancer cell line, and analyzed the effects in cell migration, invasion, and tube formation of endothelial cells using matrigel-coated transwell chambers.

Key words

Angiogenesis Co-culture assay Transwell chambers HUVEC SKOV3 ovarian cancer 


  1. 1.
    Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M et al (2014) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. doi: 10.1002/ijc.29210. PMID:25220842. Published online 9 October 2014
  2. 2.
    Susana B, Stanley B (2013) New strategies in the treatment of ovarian cancer: current clinical perspectives and future potential. Clin Cancer Res 19:961–968CrossRefGoogle Scholar
  3. 3.
    Jackson AL, Eisenhauer EL, Herzog TJ (2015) Emerging therapies: angiogenesis inhibitors for ovarian cancer. Expert Opin Emerg Drugs 20(2):331–346CrossRefPubMedGoogle Scholar
  4. 4.
    Tuija M, Alitalo K (1995) Endothelial receptor tyrosine kinases involved in angiogenesis. J Cell Biol 129:895–898CrossRefGoogle Scholar
  5. 5.
    Wolf-Dietrich C, Fernandez A, Joussen A, Eike-Gert A, Flynn E, Lo KM, Gillies S, Javaherian K, Folkman J, Shing Y (2001) Effect of antiangiogenic therapy on slowly growing, poorly vascularized tumors in mice. J Natl Cancer Inst 93:382–387CrossRefGoogle Scholar
  6. 6.
    Kilarski W, Petersson L, Fuchs PF, Zielinski MS, Gerwins P (2012) An in vivo neovascularization assay for screening regulators of angiogenesis and assessing their effects on pre-existing vessels. Angiogenesis 15:643–655PubMedPubMedCentralGoogle Scholar
  7. 7.
    Holash J, Wiegand SJ, Yancopoulos GD (1999) New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. Oncogene 18:5356–5362CrossRefPubMedGoogle Scholar
  8. 8.
    Nishida N, Hirohisa Y, Nishida T, Kamura T, Kojiro M (2006) Angiogenesis in cáncer. Vasc Health Risk Manag 2:213–219CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Muthukkaruppan VR, Kubai L, Auerbach R (1982) Tumor-induced neovascularization in the mouse eye. J Natl Cancer Inst 69:699–708PubMedGoogle Scholar
  10. 10.
    Zhoua Q, Gallaghera R, Ufret-Vincentya R, Lia X, Olsonb E, Wanga S (2011) Regulation of angiogenesis and choroidal neovascularization by members of microRNA-23∼27∼24 clusters. PNAS 108:8287–8292CrossRefGoogle Scholar
  11. 11.
    Wang S, Olson EN (2009) AngiomiRs-key regulators of angiogenesis. Curr Opin Genet Dev 19:205–211CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Shaik S, Nucera C, Inuzuka H, Gao D, Garnaas M, Frechette G et al (2012) SCFa-TRCP suppresses angiogenesis and thyroid cancer cell migration by promoting ubiquitination and destruction of VEGF receptor 2. J Exp Med 209:1289–1307CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Chen Y, Wei T, Yan L, Lawrence F, Qian H, Burkholder P et al (2008) Developing and applying a gene functional association network for anti-angiogenic kinase inhibitor activity assessment in an angiogenesis co-culture model. BMC Genomics 9:264–273CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Carolyn A, Staton MWR, Nicola J, Brown A (2009) Critical analysis of current in vitro and in vivo angiogenesis assays. Int J Exp Path 90:195–221CrossRefGoogle Scholar
  15. 15.
    Martin J, Siemerink IK, Ilse MC, Vogels AW, Griffioen JF, Noorden V, Schlingemann R (2012) CD34 marks angiogenic tip cells in human vascular endothelial cell cultures. Angiogenesis 15:151–163CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Ali Flores-Pérez
    • 1
  • Dolores Gallardo Rincón
    • 2
  • Erika Ruiz-García
    • 2
  • Raquel Echavarria
    • 1
  • Laurence A. Marchat
    • 3
  • Elizbeth Álvarez-Sánchez
    • 1
  • César López-Camarillo
    • 1
    Email author
  1. 1.Posgrado en Ciencias GenómicasUniversidad Autónoma de la Ciudad de MéxicoBenito JuarzeMexico
  2. 2.Laboratorio de Medicina TranslacionalInstituto Nacional de CancerologíaTlalpanMexico
  3. 3.Programa en Biomedicina Molecular y Red de BiotecnologíaEscuela Nacional de Medicina y Homeopatía, Instituto Politécnico NacionalCiudad de MéxicoMexico

Personalised recommendations