Combination of Anti-miRNAs Oligonucleotides with Low Amounts of Chemotherapeutic Agents for Pancreatic Cancer Therapy

  • Marta Passadouro
  • Henrique FanecaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1699)


Pancreatic ductal adenocarcinoma (PDAC) is the most predominant type of pancreatic cancer and presents one of the highest mortality rates when compared with other carcinomas. The absence of efficient treatment options for PDAC prompted us to investigate whether microRNA inhibition, combined or not with chemotherapeutic agents, would constitute a promising therapeutic approach for this disease. In this chapter, we describe several methods and procedures that can be used to evaluate the potential of new therapeutic strategies involving oligonucleotides against overexpressed microRNAs, in PDAC, either alone or in combination with low amounts of chemotherapeutic drugs.

Key words

Cationic liposomes Lipoplexes Anti-miRNAs oligonucleotides Chemotherapy Combined antitumor strategies Pancreatic cancer therapy 


  1. 1.
    Saif MW (2011) Pancreatic neoplasm in 2011 : an update. J Pancreas 12:316–321Google Scholar
  2. 2.
    Hidalgo M, Von Hoff DD (2012) Translational therapeutic opportunities in ductal adenocarcinoma of the pancreas. Clin Cancer Res 18:4249–4256CrossRefPubMedGoogle Scholar
  3. 3.
    Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62:10–29CrossRefPubMedGoogle Scholar
  4. 4.
    Marco MDI, Cicilia RDI, Macchini M et al (2010) Metastatic pancreatic cancer : is gemcitabine still the best standard treatment ? (Review). Oncol Rep 23:1183–1192CrossRefPubMedGoogle Scholar
  5. 5.
    Mardin WA, Mees ST (2009) MicroRNAs: novel diagnostic and therapeutic tools for pancreatic ductal adenocarcinoma? Ann Surg Oncol 16:3183–3189CrossRefPubMedGoogle Scholar
  6. 6.
    Zhang Y, Li M, Wang H et al (2009) Profiling of 95 microRNAs in pancreatic cancer cell lines and surgical specimens by real-time PCR analysis. World J Surg 33:698–709CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Szafranska E, Davison TS, John J et al (2007) MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene 26:4442–4452CrossRefPubMedGoogle Scholar
  8. 8.
    Volinia S, Calin G, Liu CG et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103:2257–2261CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bloomston M, Frankel WL, Petrocca F et al (2007) MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 297:1901–1908CrossRefPubMedGoogle Scholar
  10. 10.
    Passadouro M, Pedroso de Lima MC, Faneca H (2014) MicroRNA modulation combined with sunitinib as a novel therapeutic strategy for pancreatic cancer. Int J Nanomedicine 9:3203–3217PubMedPubMedCentralGoogle Scholar
  11. 11.
    Faneca H, Düzgünes N, Pedroso de Lima MC (2010) Fluorescence methods for evaluating lipoplex-mediated gene delivery. In: Weissig V (ed) Methods in molecular biology: liposomes, vol 606. Humana Press Inc., New Jersey, pp 425–437Google Scholar
  12. 12.
    Faneca H, Simões S, Pedroso de Lima MC (2004) Association of albumin or protamine to lipoplexes: enhancement of transfection and resistance to serum. J Gene Med 6:681–692CrossRefPubMedGoogle Scholar
  13. 13.
    Fiske CH, Subbarow Y (1925) The colorimetric determination of phosphorus. J Biol Chem 66:375–400Google Scholar
  14. 14.
    Bartlett GR (1959) Phosphorus assay in column chromatography. J Biol Chem 234:466–468PubMedGoogle Scholar
  15. 15.
    Faneca H, Faustino A, Pedroso de Lima MC (2008) Synergistic antitumoral effect of non-viral HSV-Tk/GCV gene therapy and vinblastine in mammary adenocarcinoma cells. J Control Release 126:175–184CrossRefPubMedGoogle Scholar
  16. 16.
    Lu J, Tsourkas A (2011) Quantification of miRNA abundance in single cells using locked nucleic acid-FISH and enzyme-labeled fluorescence. Methods Mol Biol 680:77–88CrossRefPubMedGoogle Scholar
  17. 17.
    Düzgüneş N (2003) Preparation and quantitation of small unilamellar liposomes and large unilamellar reverse-phase evaporation liposomes. Methods Enzymol 367:23–27CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
  2. 2.Department of Life Sciences, Faculty of Science and TechnologyUniversity of CoimbraCoimbraPortugal

Personalised recommendations