Advertisement

Identification of E6/E7-Dependent MicroRNAs in HPV-Positive Cancer Cells

  • Anja Honegger
  • Daniela Schilling
  • Holger Sültmann
  • Karin Hoppe-Seyler
  • Felix Hoppe-SeylerEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1699)

Abstract

Oncogenic types of human papillomaviruses (HPVs) are closely linked to the development of anogenital and head and neck cancers . The expression of the viral E6 and E7 genes is crucial for the transforming activities of HPVs. There is accumulating evidence that the HPV E6/E7 oncogenes can profoundly affect the cellular microRNA (miRNA) composition. Since alterations of miRNA expression levels can contribute to cancer development and maintenance, it will be important to understand in depth the crosstalk between the HPV oncogenes and the cellular miRNA network . Here, we describe a method to identify E6/E7-dependent intracellular miRNAs by small RNA deep sequencing , upon silencing of endogenous E6/E7 expression in HPV-positive cancer cells in vitro. In addition, we provide a protocol to identify E6/E7-dependent miRNA alterations in exosomes that are secreted by HPV-positive cancer cells in vitro.

Key words

Human papillomavirus Tumor virus Cervical cancer microRNA Microvesicles Exosomes 

Notes

Acknowledgments

The authors thank Julia Bulkescher, Claudia Lohrey, and Sandra Bastian for expert technical assistance, and Felicitas Bossler for helpful comments on the manuscript.

Conflict of interest: The authors declare no conflict of interest.

References

  1. 1.
    Schiller JT, Lowy DR (2012) Understanding and learning from the success of prophylactic human papillomavirus vaccines. Nat Rev Microbiol 10:681–692CrossRefPubMedGoogle Scholar
  2. 2.
    American Cancer Society (2015) Global cancer facts and figures, 3rd edn. American Cancer Society, AtlantaGoogle Scholar
  3. 3.
    zur Hausen H (2002) Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2:342–350CrossRefPubMedGoogle Scholar
  4. 4.
    McLaughlin-Drubin ME, Münger K (2009) Oncogenic activities of human papillomaviruses. Virus Res 143:195–208CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Hoppe-Seyler F, Hoppe-Seyler K (2011) Emerging topics in human tumor virology. Int J Cancer 129:1289–1299CrossRefPubMedGoogle Scholar
  6. 6.
    Di Leva G, Garofalo M, Croce CM (2014) MicroRNAs in cancer. Annu Rev Pathol 9:287–314CrossRefPubMedGoogle Scholar
  7. 7.
    Schwarzenbach H, Nishida N, Calin GA et al (2014) Clinical relevance of circulating cell-free microRNAs in cancer. Nat Rev Clin Oncol 11:145–156CrossRefPubMedGoogle Scholar
  8. 8.
    Kincaid RP, Sullivan CS (2012) Virus-encoded microRNAs: an overview and a look to the future. PLoS Pathog 8:e1003018. doi: 10.1371/journal.ppat.1003018 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Honegger A, Schilling D, Bastian S et al (2015) Dependence of intracellular and exosomal microRNAs on viral E6/E7 oncogene expression in HPV-positive tumor cells. PLoS Pathog 11:e1004712. doi: 10.1371/journal.ppat.1004712 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Thierry F (2009) Transcriptional regulation of the papillomavirus oncogenes by cellular and viral transcription factors in cervical carcinoma. Virology 384:375–379CrossRefPubMedGoogle Scholar
  11. 11.
    Colombo M, Raposo G, Théry C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289CrossRefPubMedGoogle Scholar
  12. 12.
    Valadi H, Ekström K, Bossios A et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659CrossRefPubMedGoogle Scholar
  13. 13.
    Zhang J, Li S, Li L et al (2015) Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics 13:17–24CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Properzi F, Logozzi M, Fais S (2013) Exosomes: the future of biomarkers in medicine. Biomark Med 7:769–778CrossRefPubMedGoogle Scholar
  15. 15.
    Friedlander MR, Mackowiak SD, Li N et al (2012) miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res 40:37–52CrossRefPubMedGoogle Scholar
  16. 16.
    Griffiths-Jones S (2004) The microRNA registry. Nucleic Acids Res 32:D109–D111CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Griffiths-Jones S, Grocock RJ, van Dongen S et al (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34:D140–D144CrossRefPubMedGoogle Scholar
  18. 18.
    Griffiths-Jones S, Saini HK, van Dongen S et al (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158CrossRefPubMedGoogle Scholar
  19. 19.
    Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39:D152–D157CrossRefPubMedGoogle Scholar
  20. 20.
    Butz K, Ristriani T, Hengstermann A et al (2003) siRNA targeting of the viral E6 oncogene efficiently kills human papillomavirus-positive cancer cells. Oncogene 22:5938–5945CrossRefPubMedGoogle Scholar
  21. 21.
    Parsons BD, Schindler A, Evans DH et al (2009) A direct phenotypic comparison of siRNA pools and multiple individual duplexes in a functional assay. PLoS One 4:e8471CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Jackson AL, Linsley PS (2010) Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat Rev Drug Discov 9:57–67CrossRefPubMedGoogle Scholar
  23. 23.
    Scheffner M, Werness BA, Huibregtse JM et al (1990) The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63:1129–1136CrossRefPubMedGoogle Scholar
  24. 24.
    el-Deiry WS, Tokino T, Velculescu VE et al (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825CrossRefPubMedGoogle Scholar
  25. 25.
    McLaughlin-Drubin ME, Munger K (2009) The human papillomavirus E7 oncoprotein. Virology 384:335–344CrossRefPubMedGoogle Scholar
  26. 26.
    Thery C, Amigorena S, Raposo G et al (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol 3(11.) 1-3.22.29Google Scholar
  27. 27.
    Honegger A, Leitz J, Bulkescher J et al (2013) Silencing of human papillomavirus (HPV) E6/E7 oncogene expression affects both the contents and the amounts of extracellular microvesicles released from HPV-positive cancer cells. Int J Cancer 133:1631–1642CrossRefPubMedGoogle Scholar
  28. 28.
    Weischenfeldt J, Simon R, Feuerbach L et al (2013) Integrative genomic analyses reveal an androgen-driven somatic alteration landscape in early-onset prostate cancer. Cancer Cell 23:159–170CrossRefPubMedGoogle Scholar
  29. 29.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408CrossRefPubMedGoogle Scholar
  30. 30.
    Witwer KW, Buzás EI, Bemis LT et al (2013) Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles 2:20360. doi: 10.3402/jev.v2i0.20360 CrossRefGoogle Scholar
  31. 31.
    Taylor DD, Gercel-Taylor C (2008) MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 110:13–21CrossRefPubMedGoogle Scholar
  32. 32.
    Mullokandov G, Baccarini A, Ruzo A et al (2012) High-throughput assessment of microRNA activity and function using microRNA sensor and decoy libraries. Nat Methods 9:840–846CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Anja Honegger
    • 1
  • Daniela Schilling
    • 2
  • Holger Sültmann
    • 2
  • Karin Hoppe-Seyler
    • 1
  • Felix Hoppe-Seyler
    • 1
    Email author
  1. 1.Molecular Therapy of Virus-Associated Cancers (F065), German Cancer Research Center (DKFZ)HeidelbergGermany
  2. 2.Cancer Genome Research (B063), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK)HeidelbergGermany

Personalised recommendations