Skip to main content

In Vitro Erythroid Differentiation and Lentiviral Knockdown in Human CD34+ Cells from Umbilical Cord Blood

  • Protocol
  • First Online:
Book cover Erythropoiesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1698))

Abstract

Human umbilical cord blood is a rich source of hematopoietic stem and progenitor cells. CD34+ cells in umbilical cord blood are more primitive than those in peripheral blood or bone marrow, and can proliferate at a high rate and differentiate into multiple cell types. In this protocol, a dependable method is described for the isolation of fetal CD34+ cells from umbilical cord blood and expanding these cells in culture. The cells can then be in vitro differentiated along an erythroid pathway, while simultaneously performing knockdown of a gene of choice. The use of lentiviral vectors that express small hairpin RNA (shRNA) is an efficient method to downregulate genes. Flow cytometric analyses are used to enrich for erythroid cells. Using these methods, one can generate in vitro differentiated cells to use for quantitative reverse transcriptase PCR and other purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Simmons DL, Satterthwaite AB, Tenen DG, Seed B (1992) Molecular cloning of a cDNA encoding CD34, a sialomucin of human hematopoietic stem cells. J Immunol 148(1):267–271

    CAS  PubMed  Google Scholar 

  2. Sidney LE, Branch MJ, Dunphy SE, Dua HS, Hopkinson A (2014) Concise review: evidence for CD34 as a common marker for diverse progenitors. Stem Cells 32(6):1380–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Huang S, Law P, Young D, Ho AD (1998) Candidate hematopoietic stem cells from fetal tissues, umbilical cord blood vs. adult bone marrow and mobilized peripheral blood. Exp Hematol 26(12):1162–1171

    CAS  PubMed  Google Scholar 

  4. Smogorzewska EM, Barsky LW, Crooks GM, Wienberg KI (1997) Purification of hematopoietic stem cells from human bone marrow and umbilical cord blood. Cent Eur J Immunol 22:232–239

    Google Scholar 

  5. Hordyjewska A, Popiołek Ł, Horecka A (2015) Characteristics of hematopoietic stem cells of umbilical cord blood. Cytotechnology 67(3):387–396

    Article  CAS  PubMed  Google Scholar 

  6. Zhou G, Chen J, Lee S, Clark T, Rowley JD, Wang SM (2001) The pattern of gene expression in human CD34+ stem/progenitor cells. Proc Natl Acad Sci 98(24):13966–13971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kurita R, Suda N, Sudo K, Miharada K, Hiroyama T, Miyoshi H, Tani K, Nakamura Y (2013) Establishment of immortalized human erythroid progenitor cell lines able to produce enucleated red blood cells. PLoS One 8(3):e59890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fibach E, Prus E (2005) Differentiation of human erythroid cells in culture. Curr Protoc Immunol Chapter 22:Unit 22F.7

    CAS  PubMed  Google Scholar 

  9. Loken MR, Shah VO, Dattilio KL, Civin CI (1987) Flow cytometric analysis of human bone marrow. II normal B lymphocyte development. Blood 70(5):1316–1324

    CAS  PubMed  Google Scholar 

  10. Saeland S, Caux C, Favre C, Aubry JP, Mannoni P, Pebusque MJ, Gentilhomme O, Otsuka T, Yokota T, Arai N (1988) Effects of recombinant human interleukin-3 on CD34-enriched normal hematopoietic progenitors and on myeloblastic leukemia cells. Blood 72(5):1580–1588

    CAS  PubMed  Google Scholar 

  11. Caux C, Favre C, Saeland S, Duvert V, Mannoni P, Durand I, Aubry JP, de Vries JE (1989) Sequential loss of CD34 and class II MHC antigens on purified cord blood hematopoietic progenitors cultured with IL-3: characterization of CD34-, HLA-DR+ cells. Blood 74(4):1287–1294

    CAS  PubMed  Google Scholar 

  12. Wysocki LJ, Sato VL (1978) “Panning” for lymphocytes: a method for cell selection. Proc Natl Acad Sci 75(6):2844–2848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fibach E, Manor D, Oppenheim A, Rachmilewitz EA (1989) Proliferation and maturation of human erythroid progenitors in liquid culture. Blood 73:100–103

    CAS  PubMed  Google Scholar 

  14. Fibach E, Rachmilewitz EA (1993) The two-step liquid culture: a novel procedure for studying maturation of human normal and pathological erythroid precursors. Stem Cells 11(S1):36–41

    Article  PubMed  Google Scholar 

  15. Migliaccio G, Di Pietro R, Di Giacomo V, Di Baldassarre A, Migliaccio AR, Maccioni L, Galanello R, Papayannopoulou T (2002) In vitro mass production of human erythroid cells from the blood of normal donors and of thalassemic patients. Blood Cell Mol Dis 28(2):169–180

    Article  Google Scholar 

  16. Li Y, Tsun A, Gao Z, Han Z, Gao Y, Li Z, Lin F, Wang Y, Wei G, Yao Z, Li B (2013) 60-kDa Tat-interactive protein (TIP60) positively regulates Th-inducing POK (ThPOK)-mediated repression of eomesodermin in human CD4+ T cells. J Biol Chem 288(22):15537–15546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Amaya M, Desai M, Gnanapragasam MN, Wang SZ, Zu Zhu S, Williams DC, Ginder GD (2013) Mi2β-mediated silencing of the fetal -globin gene in adult erythroid cells. Blood 121(17):3493–3501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gnanapragasam MN, Scarsdale JN, Amaya ML, Webb HD, Desai MA, Walavalkar NM, Wang SZ, Zu Zhu S, Ginder GD, Williams DC (2011) p66α–MBD2 coiled-coil interaction and recruitment of Mi-2 are critical for globin gene silencing by the MBD2–NuRD complex. Proc Natl Acad Sci 108(18):7487–7492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kingston RE, Chen CA, Rose JK (2003) Calcium phosphate transfection. Curr Protoc Mol Biol Chapter 9:Unit 9F.1

    Google Scholar 

  20. Singer O, Verma IM (2008) Applications of lentiviral vectors for shRNA delivery and transgenesis. Curr Gene Ther 8(6):483–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vinjamur DS, Alhashem YN, Mohamad SF, Amin P, Williams DC Jr, Lloyd JA (2016) Krüppel-like transcription factor KLF1 is required for optimal γ-and β-globin expression in human fetal erythroblasts. PLoS One 11(2):e0146802

    Article  PubMed  PubMed Central  Google Scholar 

  22. Naldini L, Blömer U, Gage FH, Trono D, Verma IM (1996) Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci 93(21):11382–11388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dijkers PF, Medema RH, Lammers JWJ, Koenderman L, Coffer PJ (2000) Expression of the pro-apoptotic Bcl-2 family member Bim is regulated by the forkhead transcription factor FKHR-L1. Curr Biol 10(19):1201–1204

    Article  CAS  PubMed  Google Scholar 

  24. Olivier EN, Qiu C, Velho M, Hirsch RE, Bouhassira EE (2006) Large-scale production of embryonic red blood cells from human embryonic stem cells. Exp Hematol 34(12):1635–1642

    Article  CAS  PubMed  Google Scholar 

  25. Wiznerowicz M, Trono D (2003) Conditional suppression of cellular genes: lentivirus vector-mediated drug-inducible RNA interference. J Virol 77(16):8957–8951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank the St. Louis Cord Blood Bank (SLCBB, St. Louis, MO) for providing us with fresh umbilical cord blood.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joyce A. Lloyd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Kovilakath, A., Mohamad, S., Hermes, F., Wang, S.Z., Ginder, G.D., Lloyd, J.A. (2018). In Vitro Erythroid Differentiation and Lentiviral Knockdown in Human CD34+ Cells from Umbilical Cord Blood. In: Lloyd, J. (eds) Erythropoiesis. Methods in Molecular Biology, vol 1698. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7428-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7428-3_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7427-6

  • Online ISBN: 978-1-4939-7428-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics