Skip to main content

Calorimetry and Soil Biodegradation: Experimental Procedures and Thermodynamic Models

  • Protocol
  • First Online:
Toxicity and Biodegradation Testing

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

Calorimetry measures the heat flow of any chemical, physical, and biological reaction and it is considered an important tool in all those scientific disciplines. Calorimetry evolves and focuses on designing more and more sensitive instruments capable of monitoring the heat rate associated with practically all living systems including soil. To study soil, there are sorts of calorimeters designed as multichannel systems that can monitor up to 24 samples at the same time. Calorimetry detects the heat released by the microbial metabolism, using low quantities of soil for the experimental measurements, ranging now from 0.8 g to 5 g depending on the goal of the study, on the kind of soil, and also on the calorimeter type. Beyond this, calorimeters permit monitoring the soil microbial metabolism directly and continuously, without disturbing the sample during long periods of time, and without the need to culture organisms from the soil or to add radiolabeled or fluorescent substrates.

All these advantages promoted the opening of new research goals in soil science to improve the existing knowledge about soil microbial metabolism, by searching and applying alternative indicators of the soil microbial biochemistry that can be quantified by calorimetry. More recently, and as a consequence of the latest advances in the design of these instruments, studies to monitor the response of the soil microbial population to changing temperature are starting to be considered, due to the direct involvement of soil in the environmental impact of climate change.

This chapter aims to give a specific and detailed description about how to apply calorimetry to study the soil microbial metabolism, responsible for soil biodegradation and deeply involved in the global C cycle, with guidelines going from the experimental design to the application of thermodynamic models to study the soil microbial biochemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Paul EA (ed) (2007) Soil microbiology, ecology and biochemistry, 3rd edn. Academic, Elsevier

    Google Scholar 

  2. Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, Berdugo M, Campbell CD, Singh BK (2016) Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat Commun 7:10541. doi:10.1038/ncomms10541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Riah-Anglet W, Trinsoutrot-Gattin I, Martin-Laurent F, Laroche-Ajzenberg E, Norini MP, Latour X, Laval K (2015) Soil microbial community structure and function relationships: a heat stress experiment. Appl Soil Ecol 86:121–130

    Article  Google Scholar 

  4. Caldwell BA (2005) Enzyme activities as a component of soil biodiversity: a review. Pedobiologia 49:637–644

    Article  CAS  Google Scholar 

  5. Ryan M, Law BE (2005) Interpreting, measuring, and modeling soil respiration. Biogeochem 73:3–27

    Article  Google Scholar 

  6. Lehmann J, Kleber M (2015) The contentious nature of soil organic matter. Nature 528:60–68

    Article  CAS  PubMed  Google Scholar 

  7. Burns RG, De Forest JL, Marxen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD, Weintraub MN, Zoppini A (2013) Soil enzymes in a changing world environment: current knowledge and future directions. Soil Biol Biochem 58:216–234

    Article  CAS  Google Scholar 

  8. Blagodatskaya E, Blagodatsky S, Anderson TH, Kuzyakov Y (2014) Microbial growth and carbon use efficiency in the rhizosphere and root-free soil. PLoS One 9(4):e93282. doi:10.1371/journal.pone.0093282

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bölscher T, Wadsö L, Börjesson G, Herrmann AM (2016) Differences in substrate use efficiency: impacts of microbial community composition, land use management, and substrate complexity. Biol Fertil Soils 52:547–559

    Article  Google Scholar 

  10. Forrest WW (1972) Microcalorimetry. In: Norris JR, Ribbons DW (eds) Methods in microcalorimetry, vol 6B. Academic, New York, p 285

    Google Scholar 

  11. Xing-Min R, Qiao-Yun H, Dai-Hua J, Peng C, Wei L (2007) Isothermal Microcalorimetry: a review of applications in soil and environmental sciences. Pedosphere 17(2):137–145

    Article  Google Scholar 

  12. Barros N, Salgado J, Feijoo S (2007) Calorimetry and soil. Thermochim Acta 25:11–17

    Article  Google Scholar 

  13. Poeplau C, Herrmann AM, Kätterer T (2016) Opposing effects of nitrogen and phosphorus on soil microbial metabolism and the implications for soil carbon storage. Soil Biol Biochem 100:83–91

    Article  CAS  Google Scholar 

  14. Braissant O, Wirz D, Göpfert B, Daniels AU (2010) Use of isothermal calorimetry to monitor microbial activities. FEMS Microbiol Lett 303:1–8

    Article  CAS  PubMed  Google Scholar 

  15. Bravo D, Braissant O, Cailleau G, Verrecchia E, Junier P (2014) Isolation and characterization of oxalotrophic bacteria from tropical soils. Arch Microbiol 197:65–77

    Article  PubMed  Google Scholar 

  16. Swallow MJB, Quideau SA (2014) A method for determining community level physiological profiles of organic soil horizons. Soil Sci Soc Am J 79:536–542

    Article  Google Scholar 

  17. Barros N, Feijoo S, Salgado J, Ramajo B, García JR, Hansen L (2008) The dry limit of microbial life in the Atacama desert revealed by calorimetric approaches. Eng Life Sci 8(5):477–486

    Article  CAS  Google Scholar 

  18. Renault P, Ben-Sassi M, Bérard A (2013) Improving the MicroResp™ substrate-induced respiration method by a more complete description of CO2 behavior in closed incubation wells. Geoderma 207–208:82–91

    Article  Google Scholar 

  19. Lebuhn M, Heilmann B, Hartmann A (1994) Effects of drying/rewetting stress on microbial auxin production and L-tryptochan catabolism. Biol Fertil Soils 18:302–310

    Article  CAS  Google Scholar 

  20. Lauber CL, Zhou N, Gordon JI, Knight R, Fierer N (2010) Effect of storage conditions on the assessment of bacterial community structure in soil and human-associated samples. FEMS Microbiol Lett 307(1):80–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Núñez-Regueira L, Barros N, Barja I (1994) Effect of storage of soil at 4 °C on the microbial activity studied by microcalorimetry. J Therm Anal Calorim 41:1379–1383

    Article  Google Scholar 

  22. Barros N, Gómez-Orellana I, Feijoo S, Balsa R (1995) The effect of soil moisture on soil microbial activities studied by microcalorimetry. Thermochim Acta 249(1):161–168

    Article  CAS  Google Scholar 

  23. Pesaro M, Nicollier G, Zeyer J, Widmer F (2004) Impact of soil drying-rewetting stress on microbial communities and activities and on degradation of two crop protection products. Appl Environ Microbiol 70:2577–2587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Barros N, Feijoo S, Simoni JA, Critter SAM, Airoldi C (2001) Interpretation of the metabolic enthalpy change, ΔHmet, calculated for microbial growth reactions in soils. J Therm Anal Calorim 63:577–588

    Article  CAS  Google Scholar 

  25. Herrmann A, Bölscher T (2015) Simultaneous screening of microbial energetics and CO2 respiration in soil samples from different ecosystems. Soil Biol Biochem 83:88–92

    Article  CAS  Google Scholar 

  26. Zheng S, Hu J, Chen K, Yao J, Yu Z, Lin X (2009) Soil microbial activity measured by microcalorimetry in response to long term fertilization regimes and available phosphorous on heat evolution. Soil Biol Biochem 41:2094–2099

    Article  CAS  Google Scholar 

  27. Nuñez L, Barros N, Barja I (1994) A kinetic analysis of the degradation of glucose by soil microorganisms studied by microcalorimetry. Thermochim Acta 237:73–81

    Article  Google Scholar 

  28. Vor T, Dyckmans J, Flessa H, Beese F (2002) Use of microcalorimetry to study microbial activity during the transition from oxic to anoxic conditions. Biol Fertil Soils 36:66–71

    Article  CAS  Google Scholar 

  29. Boling EA, Blanchard GC, Russell WJ (1973) Bacterial identification by microcalorimetry. Nature 241:472–473

    Article  CAS  PubMed  Google Scholar 

  30. Barros N, Salgado J, Rodríguez-Añón JA, Proupín J, Villanueva M, Hansen L (2010) Calorimetric approach to metabolic carbon conversion efficiency in soils: comparison of experimental and theoretical models. J Therm Anal Calorim 99(3):771–777

    Article  CAS  Google Scholar 

  31. Herrmann AM, Coucheney E, Nunan N (2014) Isothermal microcalorimetry provides new insight into terrestrial carbon cycle. Environ Sci Technol 48:4344–4352

    Article  CAS  PubMed  Google Scholar 

  32. Sparling GP (1983) Estimation of microbial biomass and activity in soil using microcalorimetry. J Soil Sci 34:381–390

    Article  CAS  Google Scholar 

  33. Sesto E, Sigstad E (2011) A new approach to determine soil microbial biomass by calorimetry. J Therm Anal Calorim 104:23–29

    Article  Google Scholar 

  34. Hassan W, Chen W, Huang Q, Mohamed I (2013) Microcalorimetric evaluation of soil microbiological properties under plant residues and dogmatic water gradients in Red soil. JPN Soc Soil Sci Plant Nutr 59(6):858–870

    Article  Google Scholar 

  35. Xu J, Feng Y, Barros N, Zhong L, Cheng R, Liu X (2016) Exploring the potential of microcalorimetry to study the soil microbial metabolic diversity. J Therm Anal Calorim. doi:10.1007/s10973-016-5952-2

  36. Battley EH (1987) Energetics of microbial growth. Wiley, New York

    Google Scholar 

  37. Geyer KM, Kyker-Snowman E, Grandy S, Frey SD (2016) Microbial carbon use efficiency: accounting for population, community, and ecosystem-scale control over the fate of metabolized organic matter. Biogeochem 127:173–188

    Article  CAS  Google Scholar 

  38. Kimura T, Takahashi K (1985) Calorimetric studies of soil microbes: quantitative relation between Heat evolution during microbial degradation of glucose and changes in microbial activity. J Gen Microbiol 131:3083–3089

    CAS  Google Scholar 

  39. Barros N, Feijoo S (2003) A combined mass and energy balance to provide bioindicators of soil microbiological quality. Biophys Chem 104:561–572

    Article  CAS  PubMed  Google Scholar 

  40. Harris JA, Ritz K, Coucheney E, Grice SM, Lerch TZ, Pawlett M, Herrmann AM (2012) The thermodynamic efficiency of soil microbial communities subject to long-term stress is lower than those under conventional input regimes. Soil Biol Biochem 47:149–157

    Article  CAS  Google Scholar 

  41. Braissant O, Keiser J, Meister I, Bachmann A, Wirz D, Göpfert B, Bonkat G, Wadsö I (2015) Isothermal microcaloriemtry accurately detects bacteria, tumorous microtissues and parasitic worms in a label-free well-plate assay. Biotechnol J 10(3):460–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. von Stockar U, Gustafsson L, Larsson C, Marison I, Tissot P, Gnaiger E (1993) Thermodynamic considerations in constructing energy balances for cellular growth. Biochim Biophys Acta 1183:221–240

    Article  Google Scholar 

  43. Wadsö L, Hansen LD (2015) Calorespirometry of terrestrial organisms and ecosystems. Methods 76:11–19

    Article  PubMed  Google Scholar 

  44. Barros N, Feijoo S, Hansen LD (2011) Calorimetric determination of metabolic heat, CO2 rates and the calorespirometric ratio of soil basal metabolism. Geoderma 160:542–547

    Article  CAS  Google Scholar 

  45. Barros N, Hansen LD, Piñeiro V, Perez-Cruzado C, Villanueva M, Proupín J, Rodríguez-Añón JA (2016) Factors influencing the calorespirometric ratios of soil microbial metabolism. Soil Biol Biochem 92:221–229

    Article  CAS  Google Scholar 

  46. Hansen L, Mcfarlane C, McKinnon N, Smithv BN, Criddle RS (2004) Use of calorespirometric ratios, heat per CO2 and heat per O2, to quantify metabolic paths and energetics of growing cells. Thermochim Acta 422:55–61

    Article  CAS  Google Scholar 

  47. Maskow T, Kemp R, Buchholz F, Schubert T, Kiesel B, Harms H (2010) What heat is telling us about microbial conversions in nature and technology: from chip-to megacalorimetry. Microb Biotechnol 3:269–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Barros N, Piñeiro V, Hansen L (2015) Calorespirometry: a novel tool to assess the effect of temperature on soil organic matter decomposition. Thermochim Acta 618:15–17

    Article  CAS  Google Scholar 

  49. Barros N, Hansen L, Piñeiro V, Vikegard P (2016) Calorimetry measures the response of soil organic matter biodegradation to increasing temperature. J Therm Anal Calorim 123:2397–2403

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nieves Barros Pena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Barros Pena, N. (2018). Calorimetry and Soil Biodegradation: Experimental Procedures and Thermodynamic Models. In: Bidoia, E., Montagnolli, R. (eds) Toxicity and Biodegradation Testing. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7425-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7425-2_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7424-5

  • Online ISBN: 978-1-4939-7425-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics