Alternative Approaches to Determine the Efficiency of Biomixtures Used for Pesticide Degradation in Biopurification Systems

  • Carlos E. Rodríguez-Rodríguez
  • Víctor Castro-Gutiérrez
  • Verónica Lizano-Fallas
Protocol
Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

Biopurification systems were developed for the biological treatment of pesticide-containing wastewaters originated from agricultural production. They are aimed at reducing point-source contamination related to the inadequate handling of pesticides during filling and cleaning of spraying equipment or improper disposal of application residues. These systems contain a biomixture, which comprises their biologically active core where accelerated pesticide degradation takes place. It is a common practice to determine the efficiency of biomixtures by analytical approaches that are focused on the quantification of the pesticides and their subsequent dissipation in time. Nonetheless, the simple removal of original pesticide molecule does not necessarily indicate that the treatment process is ecologically friendly, due to the possible formation of transformation products of high toxicity that are difficult to identify and quantify. This chapter discusses alternative approaches to obtain a more complete scenario regarding biomixture efficiency. These approaches include the determination of the pesticide mineralization using radiolabeled pesticides and ecotoxicological assays to determine the detoxification degree achieved by the matrix. Similarly, as the useful life of biomixtures varies according to the materials employed in its production and the climatic conditions of every region, the authors also suggest a methodology to monitor the performance of biomixtures during their aging process.

Key words

Pesticides Biomixture Toxicity Mineralization Degradation 

References

  1. 1.
    Carter A (2000) How pesticides get into water and proposed reduction measures. Pestic Outlook 11:149–156CrossRefGoogle Scholar
  2. 2.
    Isensee AR, Sadeghi AM (1996) Effect of tillage reversal on herbicide leaching to groundwater. Soil Sci 161:382–389CrossRefGoogle Scholar
  3. 3.
    Ramwell CT, Johnson PD, Boxall A, Rimmer DA (2004) Pesticide residues on the external surfaces of field-crop sprayers: environmental impact. Pest Manag Sci 60:795–802CrossRefPubMedGoogle Scholar
  4. 4.
    Torstensson L, Castillo M (1997) Use of biobeds in Sweden to minimize environmental spillages from agricultural spraying equipment. Pest Outlook 8:24–27Google Scholar
  5. 5.
    De Wilde T, Spanoghe P, Debaer C, Ryckeboer J, Springael D, Jaeken P (2007) Overview of on-farm bioremediation systems to reduce the occurrence of point source contamination. Pest Manag Sci 63:111–128CrossRefPubMedGoogle Scholar
  6. 6.
    Rodríguez-Rodríguez CE, Castro-Gutiérrez V, Chin-Pampillo JS, Ruiz-Hidalgo K (2013) On-farm biopurification systems: role of white rot fungi in depuration of pesticide-containing wastewaters. FEMS Microbiol Lett 345:1–12CrossRefPubMedGoogle Scholar
  7. 7.
    Castillo MP, Torstensson L, Stenström J (2008) Biobeds for environmental protection from pesticide use. A review. J Agric Food Chem 56:6206–6219CrossRefGoogle Scholar
  8. 8.
    Karanasios E, Tsiropoulos NG, Karpouzas DG (2012) On-farm biopurification systems for the depuration of pesticide wastewaters: recent biotechnological advances and future perspectives. Biodegradation 23:787–802CrossRefPubMedGoogle Scholar
  9. 9.
    Sniegowski K, Bers K, Van Goetem K, Ryckeboer J, Jaeken P, Spanoghe P, Springael D (2011b) Improvement of pesticide mineralization in on-farm biopurification systems by s with pesticide-primed soil. FEMS Microb Ecol 76:64–73CrossRefGoogle Scholar
  10. 10.
    Fogg P, Boxall AB, Walker A, Jukes AA (2003) Pesticide degradation in a ‘biobed’composting substrate. Pest Manag Sci 59:527–537CrossRefPubMedGoogle Scholar
  11. 11.
    Zmora-Nahum S, Hadar Y, Chen Y (2007) Physico-chemical properties of commercial composts varying in their source materials and country of origin. Soil Biol Biochem 39:1263–1276CrossRefGoogle Scholar
  12. 12.
    Coppola L, Castillo MP, Vischetti C (2011) Degradation of isoproturon and bentazone in peat- and compost-based biomixtures. Pest Manag Sci 67:107–113CrossRefPubMedGoogle Scholar
  13. 13.
    De Wilde T, Spanoghe P, Ryckeboer J, Jaeken P, Springael D (2009) Sorption characteristics of pesticides on matrix substrates used in biopurification systems. Chemosphere 75:100–108CrossRefPubMedGoogle Scholar
  14. 14.
    Karanasios E, Tsiropoulos NG, Karpouzas DG, Ehaliotis C (2010) Degradation and adsorption of pesticides in compost-based biomixtures as potential substrates for biobeds in Southern Europe. J Agric Food Chem 58:9147–9156CrossRefPubMedGoogle Scholar
  15. 15.
    Omirou M, Dalias P, Costa C, Papastefanou C, Dados A, Ehaliotis C, Karpouzas DG (2012) Exploring the potential of biobeds for the depuration of pesticide-contaminated wastewaters from the citrus production chain: laboratory, column and field studies. Environ Poll 166:31–39CrossRefGoogle Scholar
  16. 16.
    Fogg P, Boxall AB, Walker A, Jukes A (2004b) Effect of different soil textures on leaching potential and degradation of pesticides in biobeds. J Agric Food Chem 52:5643–5652CrossRefPubMedGoogle Scholar
  17. 17.
    Coppola L, Castillo MP, Monaci E, Vischetti C (2007) Adaptation of the biobed composition for chlorpyrifos degradation to southern Europe conditions. J Agric Food Chem 55:396–401CrossRefPubMedGoogle Scholar
  18. 18.
    Vischetti C, Monaci E, Cardinali A, Casucci C, Perucci P (2008) The effect of initial concentration, co-application and repeated applications on pesticide degradation in a biobed mixture. Chemosphere 72:1739–1743CrossRefPubMedGoogle Scholar
  19. 19.
    Chin-Pampillo JS, Ruiz-Hidalgo K, Masís-Mora M, Carazo E, Rodríguez-Rodríguez CE (2015b) Design of an optimized biomixture for the degradation of carbofuran based on pesticide removal and toxicity reduction of the matrix. Environ Sci Pollut Res 22:19184–19193CrossRefGoogle Scholar
  20. 20.
    Ruiz-Hidalgo K, Chin-Pampillo JS, Masís-Mora M, Carazo-Rojas E, Rodríguez-Rodríguez CE (2016a) Optimization of a fungally bioaugmented biomixture for carbofuran removal in on-farm biopurification systems. Water Air Soil Poll 227:1–14CrossRefGoogle Scholar
  21. 21.
    Chin-Pampillo JS, Ruiz-Hidalgo K, Masís-Mora M, Carazo E, Rodríguez-Rodríguez CE (2015a) Adaptation of biomixtures for carbofuran degradation in on-farm biopurification systems in tropical regions. Environ Sci Pollut Res 22:9839–9848CrossRefGoogle Scholar
  22. 22.
    Kravvariti K, Tsiropoulos NG, Karpouzas DG (2010) Degradation and adsorption of terbuthylazine and chlorpyrifos in biobed biomixtures from composted cotton crop residues. Pest Manag Sci 66:1122–1128CrossRefPubMedGoogle Scholar
  23. 23.
    Karanasios E, Tsiropoulos NG, Karpouzas DG (2013) Quantitative and qualitative differences in the metabolism of pesticides in biobed substrates and soil. Chemosphere 93:20–28CrossRefPubMedGoogle Scholar
  24. 24.
    von Wiren-Lehr S, Castillo MP, Torstensson L, Scheunert I (2001) Degradation of isoproturon in biobeds. Biol Fert Soil 33:535–540CrossRefGoogle Scholar
  25. 25.
    Schroll R, Becher HH, Dörfler U, Gayler S, Grundmann S, Hartmann HP, Ruoss J (2006) Quantifying the effect of soil moisture on the aerobic microbial mineralization of selected pesticides in different soils. Environ Sci Technol 40:3305–3312CrossRefPubMedGoogle Scholar
  26. 26.
    Sørensen SR, Schultz A, Jacobsen OS, Aamand J (2006) Sorption, desorption and mineralization of the herbicides glyphosate and MCPA in samples from two Danish soil and subsurface soil. Environ Pollut 141:184–194CrossRefPubMedGoogle Scholar
  27. 27.
    Willems HPL, Lewis KJ, Dyson JS, Lewis FJ (1996) Mineralization of 2,4-D and atrazine in the unsaturated zone of a sandy loam soil. Soil Biol Biochem 28:989–996CrossRefGoogle Scholar
  28. 28.
    Vanderheyden V, Debongnie P, Pussemier L (1997) Accelerated degradation and mineralization of atrazine in surface and subsurface soil materials. Pest Manag Sci 49:237–242CrossRefGoogle Scholar
  29. 29.
    Sniegowski K, Bers K, Ryckeboer J, Jaeken P, Spanohe P, Springael D (2011a) Robust linuron degradation in on-farm biopurification systems exposed to sequential environmental changes. Appl Environ Microbiol 77:6614–6621CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Knight JD, Cessna AJ, Ngombe D, Wolfe TM (2016) Mineralisation and degradation of 2,4-dichlorophenoxiacetic acid dimethylamine salt in a biobed matrix and in topsoil. Pest Manag Sci 72:1965–1976CrossRefPubMedGoogle Scholar
  31. 31.
    Chin-Pampillo JS, Masís-Mora M, Ruiz-Hidalgo K, Carazo E, Rodríguez-Rodríguez CE (2016) Removal of carbofuran is not affected by co-application of chlorpyrifos in a coconut fiber/compost based biomixture after aging or pre-exposure. J Environ Sci 46:182–189CrossRefGoogle Scholar
  32. 32.
    Madrigal-Zúñiga K, Ruiz-Hidalgo K, Chin-Pampillo JS, Masís-Mora M, Castro-Gutiérrez V, Rodríguez-Rodríguez CE (2016) Fungal bioaugmentation of two rice husk-based biomixtures for the removal of carbofuran in on-farm biopurification systems. Biol Fertil Soils 52:243–250CrossRefGoogle Scholar
  33. 33.
    Huete-Soto A, Castillo-González H, Masís-Mora M, Chin-Pampillo JS, Rodríguez-Rodríguez CE (2017a) Effects of oxytetracycline on the performance and activity of biomixtures: removal of herbicides and mineralization of chlorpyrifos. J Hazard Mater 321:1–8CrossRefPubMedGoogle Scholar
  34. 34.
    Ruiz-Hidalgo K, Masís-Mora M, Barbieri E, Carazo-Rojas E, Rodríguez-Rodríguez CE (2016b) Ecotoxicological analysis during the removal of carbofuran in fungal bioaugmented matrices. Chemosphere 144:864–871CrossRefPubMedGoogle Scholar
  35. 35.
    Huete-Soto A, Masís-Mora M, Lizano-Fallas V, Chin-Pampillo JS, Carazo-Rojas E, Rodríguez-Rodríguez CE (2017b) Simultaneous removal of structurally different pesticides in a biomixture: detoxification and effect of oxytetracycline. Chemosphere 169:558–567CrossRefPubMedGoogle Scholar
  36. 36.
    Rodríguez-Rodríguez CE, Madrigal-León K, Masís-Mora M, Pérez-Villanueva M, Chin-Pampillo JS (2017) Removal of carbamates and detoxification potential in a biomixture: fungal bioaugmentation versus traditional use. Ecotoxicol Environ Safe 135:252–258CrossRefGoogle Scholar
  37. 37.
    Fogg P, Boxall AB, Walker A, Jukes A (2004a) Degradation and leaching potential of pesticides in biobed systems. Pest Manag Sci 60:645–654CrossRefPubMedGoogle Scholar
  38. 38.
    Spliid NH, Helweg A, Heinrichson K (2006) Leaching and degradation of 21 pesticides in a full-scale model biobed. Chemosphere 65:2223–2232CrossRefPubMedGoogle Scholar
  39. 39.
    OECD (2004) Daphnia sp., acute immobilisation test. Guideline for testing of chemicals 202. Available at: http://www.Oecd-ilibrary.Org/docserver/download/9720201e.Pdf?Expires=1485449170&id=id&accname=guest&checksum=DAC523D1B579CF48466D7B9001B15 1C6. Accessed 12 Jan 2017
  40. 40.
    US EPA (1996) OPPTS 850.4200: seed germination/root elongation toxicity test. OPPTS ecological effect guideline, 850 seriesGoogle Scholar
  41. 41.
    Tortella GR, Rubilar O, Castillo MP, Cea M, Mella-Herrera R, Diez MC (2012) Chlorpyrifos degradation in a biomixture of biobed at different maturity stages. Chemosphere 88:224–228CrossRefPubMedGoogle Scholar
  42. 42.
    Castro-Gutiérrez V, Masís-Mora M, Diez MC, Tortella GR, Rodríguez-Rodríguez CE (2017) Aging of biomixtures: effects on carbofuran removal and microbial community structure. Chemosphere 168:418–425CrossRefPubMedGoogle Scholar
  43. 43.
    Henriksen VV, Helweg A, Spliid NH, Felding G, Stenvang L (2003) Capacity of model biobeds to retain and degrade mecoprop and isoproturon. Pest Manag Sci 59:1076–1082CrossRefPubMedGoogle Scholar
  44. 44.
    Ruiz-Hidalgo K, Chin-Pampillo JS, Masís-Mora M, Carazo E, Rodríguez-Rodríguez CE (2014) Degradation of carbofuran by Trametes versicolor in rice husk as a potential lignocellulosic substrate for biomixtures: from mineralization to toxicity reduction. Process Biochem 49:2266–2271CrossRefGoogle Scholar
  45. 45.
    Craze B (1990) Soil moisture content. In: Soil survey standard test methods. Office of Environment and Heritage. Available at: http://www.environment.nsw.gov.au/resources/soils/testmethods/mc.pdf. Accessed 15 Jan 2017
  46. 46.
    European Commission (2000) Guidance document on persistence in soil. Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10113603652&rep=rep1&type=pdf. Accessed 15 Jan 2017

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Carlos E. Rodríguez-Rodríguez
    • 1
  • Víctor Castro-Gutiérrez
    • 1
  • Verónica Lizano-Fallas
    • 1
  1. 1.Research Center of Environmental Contamination (CICA)Universidad de Costa RicaSan JoséCosta Rica

Personalised recommendations