Biodegradation Behavior of Textiles Impregnated with Ag and TiO2 Nanoparticles in Soil

  • Maja RadetićEmail author
  • Zoran Šaponjić
Part of the Methods in Pharmacology and Toxicology book series (MIPT)


Increasing global consumption of textile goods poses serious environmental problems that are present throughout the products life-cycles. With a trend of Fast Fashion, clothes became consuming goods that are discarded in huge amounts into landfills where they rot generating undesirable gases which contribute to environmental pollution and greenhouse effect. A large-scale centralized composting is a possible alternative to harmful landfilling. It is well known that different textile fibers exhibit diverse biodegradation behavior. Unlike most of the synthetic fibers, natural and particularly cellulosic fibers are prone to biodegradation. However, the finishing and thus, the presence of different chemicals on fiber surfaces may affect their biodegradation performance. Recent progress in the production of textiles impregnated with different metal and metal oxide nanoparticles is more oriented toward end-use achievements than on their environmental and health safety impacts. Despite the urgency to establish their environmental risk assessment, there are only few papers dealing with biodegradation behavior of such textile nanocomposites under terrestrial conditions. Therefore, this chapter is aimed to provide an insight into these results and to stress the necessity of extended research in this field taking into consideration that various characteristics of nanoparticles are relevant for their biodegradation behavior.

Key words

Biodegradation Textiles Ag nanoparticles TiO2 nanoparticles Soil 



This work has been supported by the Ministry of Education, Science and Technological Development of Republic of Serbia (project no. 172056).


  1. 1.
    Wang Y (2006) Introduction. In: Wang Y (ed) Recycling in textiles. Woodhead Publishing Limited, CambridgeGoogle Scholar
  2. 2.
  3. 3.
    Li L, Frey M, Browning KJ (2010) Biodegradability study on cotton and polyester fabrics. J Eng Fibers Fabr 5(4):42–53Google Scholar
  4. 4.
    Park CH, Kang YK, Im SS (2004) Biodegradability of cellulose fabrics. J Appl Polym Sci 94(1):248–253CrossRefGoogle Scholar
  5. 5.
    Arshad K, Skrifvars M, Vivod V, Volmajer Valh J, Vončina B (2014) Biodegradation of natural textile materials in soil. Tekstilec 57(2):118–132CrossRefGoogle Scholar
  6. 6.
    Radetić M (2013) Functionalization of textile materials with silver nanoparticles. J Mater Sci 48(1):95–107CrossRefGoogle Scholar
  7. 7.
    Radetić M (2013) Functionalization of textile materials with TiO2 nanoparticles. J Photochem Photobiol C 16:62–76CrossRefGoogle Scholar
  8. 8.
    Lee HJ, Yeo SY, Jeong SH (2003) Antibacterial effect of nanosized silver colloidal solution on textiles fabrics. J Mater Sci 38(10):2199–2204CrossRefGoogle Scholar
  9. 9.
    Lee HJ, Jeong SH (2005) Bacteriostasis and skin innoxiousness of nanosize silver colloids on textiles fabrics. Text Res J 75(7):551–556CrossRefGoogle Scholar
  10. 10.
    Daoud WA, Xin JH, Zhang YH (2005) Surface functionalization of cellulose fibers with titanium dioxide nanoparticles and their combined bactericidal activities. Surf Sci 599(1):69–75CrossRefGoogle Scholar
  11. 11.
    Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH (2007) Functional finishing of cotton fabrics using silver nanoparticles. J Nanosci Nanotechnol 7(6):1893–1897CrossRefPubMedGoogle Scholar
  12. 12.
    Durán N, Marcato P, De Souza GIH, Alves OL, Esposito E (2007) Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol 3(2):203–208CrossRefGoogle Scholar
  13. 13.
    Tung WS, Daoud WA (2009) Photocatalytic self-cleaning keratines: a feasibility study. Acta Biomater 5(1):50–56CrossRefPubMedGoogle Scholar
  14. 14.
    Ilić V, Šaponjić Z, Vodnik V, Potkonjak B, Jovančić P, Nedeljković J, Radetić M (2009) The influence of silver content on antimicrobial activity and color of cotton fabrics functionalized with Ag nanoparticles. Carbohydr Polym 78(3):564–569CrossRefGoogle Scholar
  15. 15.
    Mihailović D, Šaponjić Z, Vodnik V, Potkonjak B, Jovančić P, Nedeljković J, Radetić M (2011) Multifunctional PES fabrics modified with colloidal Ag and TiO2 nanoparticles. Polym Advan Technol 22(12):2244–2249CrossRefGoogle Scholar
  16. 16.
    Hebeish A, El-Shafei A, Sharaf S, Zaghloul S (2011) Novel precursors for green synthesis and application of silver nanoparticles in the realm of cotton finishing. Carbohydr Polym 84(1):605–613CrossRefGoogle Scholar
  17. 17.
    Kelly FM, Johnston JH (2011) Colored and functional silver nanoparticle-wool fiber composites. ACS Appl Mater Interfaces 3(4):1083–1092CrossRefPubMedGoogle Scholar
  18. 18.
    Yuranova T, Rincon AG, Bozzi A, Parra S, Pulgarin C, Albers P, Kiwi J (2003) Antibacterial textiles prepared by RF-plasma and vacuum-UV mediated deposition of silver. J Photoch Photobio A 161(1):27–34CrossRefGoogle Scholar
  19. 19.
    Meilert KT, Laub D, Kiwi J (2005) Photocatalytic self-cleaning of modified cotton textiles by TiO2 cluster attached by chemical spacers. J Mol Catal A: Chem 237(1–2):101–108CrossRefGoogle Scholar
  20. 20.
    Qi K, Xin JH, Daoud WA, Mak CL (2007) Functionalizing polyester fiber with a self-cleaning property using anatase TiO2 and low-temperature plasma treatment. Int J Appl Ceram Technol 4(6):554–563CrossRefGoogle Scholar
  21. 21.
    Mejía MI, Marín JM, Restrepo G, Pulgarín C, Mielczarski E, Mielczarski J, Arroyo Y, Lavanchy JC, Kiwi J (2009) Self-cleaning modified TiO2 cotton pre-treated by UVC-light (185 nm) and RF-plasma in vacuum and also under atmospheric pressure. Appl Catal B 91(1–2):481–488CrossRefGoogle Scholar
  22. 22.
    Gorenšek M, Gorjanc M, Bukošek V, Kovač J, Jovančić P, Mihailović D (2010) Functionalization of PET fabrics by corona and nano silver. Text Res J 80(3):253–262CrossRefGoogle Scholar
  23. 23.
    Radetić M, Ilić V, Vodnik V, Dimitrijević S, Jovančić P, Šaponjić Z, Nedeljković JM (2008) Antibacterial effect of silver nanoparticles deposited on corona treated polyester and polyamide fabrics. Polym Adv Technol 19:1816–1821CrossRefGoogle Scholar
  24. 24.
    Ilić V, Šaponjić Z, Vodnik V, Molina R, Dimitrijević S, Jovančić P, Nedeljković J, Radetić M (2009) Antifungal efficiency of corona pretreated polyester and polyamide fabrics loaded with Ag nanoparticles. J Mater Sci 44(15):3983–3990CrossRefGoogle Scholar
  25. 25.
    Ilić V, Šaponjić Z, Vodnik V, Lazović S, Dimitrijević S, Jovančić P, Nedeljković JM, Radetić M (2010) Bactericidal efficiency of silver nanoparticles deposited onto radio frequency plasma pretreated polyester fabrics. Ind Eng Chem Res 49(16):7287–7293CrossRefGoogle Scholar
  26. 26.
    Mihailović D, Šaponjić Z, Radoičić M, Radetić T, Jovančić P, Nedeljković J, Radetić M (2010) Functionalization of polyester fabrics with alginates and TiO2 nanoparticles. Carbohydr Polym 79(3):526–532CrossRefGoogle Scholar
  27. 27.
    Mihailović D, Šaponjić Z, Molina R, Puač N, Jovančić P, Nedeljković J, Radetić M (2010) Improved properties of oxygen and argon RF plasma activated polyester fabrics loaded with TiO2 nanoparticles. ACS Appl Mater Interfaces 2(6):1700–1706CrossRefPubMedGoogle Scholar
  28. 28.
    Mihailović D, Šaponjić Z, Molina R, Radoičić M, Esquena J, Jovančić P, Nedeljković J, Radetić M (2011) Multifunctional properties of polyester fabrics modified by corona discharge/air RF plasma and colloidal TiO2 nanoparticles. Polym Composite 32(3):390–397CrossRefGoogle Scholar
  29. 29.
    Mihailović D, Šaponjić Z, Radoičić M, Lazović S, Baily CJ, Jovančić P, Nedeljković J, Radetić M (2011) Functionalization of cotton fabrics with corona/air RF plasma and colloidal TiO2 nanoparticles. Cellulose 18(3):811–825CrossRefGoogle Scholar
  30. 30.
    Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37(2):517–531CrossRefPubMedGoogle Scholar
  31. 31.
    Gottschalk F, Nowack B (2011) The release of engineered nanomaterials to the environment. J Environ Monit 13(5):1145–1155CrossRefPubMedGoogle Scholar
  32. 32.
    Blaser SA, Scheringer M, MacLeod M, Hungerbühler K (2008) Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci Total Environ 390(2–3):396–409CrossRefPubMedGoogle Scholar
  33. 33.
    Gottschalk F, Lassen C, Kjoelholt J, Christensen F, Novack B (2015) Modeling flows and concentrations of nine engineered nanomaterials in the Danish environment. Int J Environ Res Publ Health 12(5):5581–5602CrossRefGoogle Scholar
  34. 34.
    Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42(11):4133–4139CrossRefPubMedGoogle Scholar
  35. 35.
    Geranio L, Heuberger M, Nowack B (2009) The behavior of silver nanotextiles during washing. Environ Sci Technol 43(21):8113–8118CrossRefPubMedGoogle Scholar
  36. 36.
    Lorenz C, Windler L, von Goetz N, Lehmann RP, Schuppler M, Hungerbühler K, Heuberger M, Nowack B (2012) Characterization of silver release from commercially available functional (nano) textiles. Chemosphere 89(7):817–824CrossRefPubMedGoogle Scholar
  37. 37.
    Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43(24):9216–9222CrossRefPubMedGoogle Scholar
  38. 38.
    Gottschalk F, Kost E, Nowack B (2013) Engineered nanomaterials (ENM) in waters and soils. A risk quantification based on probabilistic exposure and effect modeling. Environ Toxicol Chem 32(6):1278–1287CrossRefPubMedGoogle Scholar
  39. 39.
    Lombi E, Donner E, Scheckel KG, Sekine R, Lorenz C, von Goetz N, Nowack B (2014) Silver speciation and release in commercial antimicrobial textiles as influenced by washing. Chemosphere 111:352–358CrossRefPubMedGoogle Scholar
  40. 40.
    Sun TY, Gottschalk F, Hungerbühler K, Nowack B (2014) Comprehensive modeling of environmental emissions of engineered nanomaterials. Environ Pollut 185:69–76CrossRefPubMedGoogle Scholar
  41. 41.
    Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17(5):372–386CrossRefPubMedGoogle Scholar
  42. 42.
    ASTM D 5988-03 (2003) Standard test method for determining aerobic biodegradation in soil of plastic materials or residual plastic materials after composting, USAGoogle Scholar
  43. 43.
    Fedorak PM (2005) Microbial processes in the degradation of fibers. In: Blackburn RS (ed) Biodegradable and sustainable fibers. Woodhead Publishing in Textiles, CambridgeGoogle Scholar
  44. 44.
    Nam S, Slopek R, Duane W, Warnock M, Condon BD, Sawhney P, Gbur E, Reynolds M, Allen C (2016) Comparison of biodegradation of low-weight hydroentangled raw cotton nonwoven fabric and that of commonly used disposable nonwoven fabrics in aerobic Captina silt loam soil. Text Res J 86(2):155–166CrossRefGoogle Scholar
  45. 45.
    Tomšič B, Simončič B, Orel B, Vilčnik A, Spreiyer H (2007) Biodegradability of cellulose fabric modified with imidazolidinone. Carbohydr Polym 69:478–488CrossRefGoogle Scholar
  46. 46.
    Klemenčič D, Simončič B, Tomšič B, Orel B (2010) Biodegradation of silver functionalized cellulose fibres. Carbohydr Polym 80:426–435CrossRefGoogle Scholar
  47. 47.
    Tomšič B, Klemenčić D, Simončič B, Orel B (2011) Influence of antimicrobial finishes on the biodeterioration of cotton and cotton/polyester fabrics: leaching versus bio-barrier formation. Polym Degrad Stab 96:1286–1296CrossRefGoogle Scholar
  48. 48.
    Ibrahim HMM, Hassan MS (2016) Characterization and antimicrobial properties of cotton fabric loaded with green synthesized silver nanoparticles. Carbohydr Polym 151:841–850CrossRefPubMedGoogle Scholar
  49. 49.
    Lazić V, Radoičić M, Šaponjić Z, Radetić T, Vodnik V, Nikolić S, Dimitrijević S, Radetić M (2015) Negative influence of Ag and TiO2 nanoparticles on biodegradation of cotton fabrics. Cellulose 22:1365–1378CrossRefGoogle Scholar
  50. 50.
    Milošević M, Krkobabić A, Radoičić M, Šaponjić Z, Radetić T, Radetić M (2017) Biodegradation of cotton and cotton/polyester fabrics impregnated with Ag/TiO2 nanoparticles in soil. Carbohydr Polym 158:77–84CrossRefPubMedGoogle Scholar
  51. 51.
    Primc G, Tomšič B, Vesel A, Mozetič M, Ercegović Ražić S, Gorjanc M (2016) Biodegrdability of oxygen-plasma treated cellulose textile functionalized with ZnO nanoparticles as antibacterial treatment. J Phys D Appl Phys 49:324002CrossRefGoogle Scholar
  52. 52.
    Rana S, Pichandi S, Parveen S, Fangueiro R (2014) Biodegradation studies of textiles and clothing products. In: Muthlu SS (ed) Roadmap to sustainable textiles and clothing: environmental and social aspects of textiles and clothing supply chain, 1st edn. Springer Science+Business Media, SingaporeGoogle Scholar
  53. 53.
    Damm C, Muenstedt H, Roesch A (2007) Long-term antimicrobial polyamide 6/silver-nanocomposites. J Mater Sci 42:6067–6073CrossRefGoogle Scholar
  54. 54.
    Pohle D, Damm C, Neuhof J, Rösch A, Münstedt H (2007) Antimicrobial properties of orthopaedic textiles after in-situ deposition of silver nanoparticles. Polym Polym Composites 15:357–363Google Scholar
  55. 55.
    Priester JH, Ge Y, Chang V, Stoimenov PK, Schimel JP, Stucky GD, Holden PA (2013) Assessing interactions of hydrophilic nanoscale TiO2 with soil water. J Nanopart Res 15(9):1899–1912CrossRefGoogle Scholar
  56. 56.
    Ge Y, Priester JH, Van De Werhorst LC, Schimel JP, Holden PA (2013) Potential mechanisms and environmental controls of TiO2 nanoparticle effects on soil bacteria communities. Environ Sci Technol 47(24):14411–14417CrossRefPubMedGoogle Scholar
  57. 57.
    Szostak-Kotowa J (2004) Biodeterioration of textiles. Int Biodeter Biodegr 53:165–170CrossRefGoogle Scholar
  58. 58.
    Milošević M, Radoičić M, Šaponjić Z, Nunney T, Deeks C, Lazić V, Mitrić M, Radetić T, Radetić M (2014) In situ photoreduction of Ag+-ions by TiO2 nanoparticles deposited on cotton and cotton/PET fabrics. Cellulose 21:3781–3795CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.Faculty of Technology and MetallurgyUniversity of BelgradeBelgradeSerbia
  2. 2.“Vinča” Institute of Nuclear SciencesUniversity of BelgradeBelgradeSerbia

Personalised recommendations