Optogenetic Interpellation of Behavior Employing Unrestrained Zebrafish Larvae

  • Soojin RyuEmail author
  • Rodrigo J. De MarcoEmail author
Part of the Neuromethods book series (NM, volume 133)


The zebrafish larva, Danio rerio, provides superb genetic access for studying how systematic variations in behavioral profiles relate to differences in brain activity. Larvae respond predictably to various sensory inputs and their nervous system is readily accessible. Also, their transparent body allows for noninvasive optogenetics and their small size allows for measuring behavior with full environmental control. In tethered larvae, neural activity has been correlated to eye and tail movements. The challenge now is to tackle the building blocks of behavior: internal states (maturation and learning), motivations (drives), reversible phenotypic adaptations (humoral actions), and decision processes (choice and task selection). These phenomena are best addressed through the analysis of freely behaving subjects. This chapter provides the basics for applying optogenetics to the analysis of behavior in freely swimming larvae. As a study case, we offer information from recent tests showing how optogenetic manipulation of hormone-producing cells can be used to address reversible phenotypic adaptations. Because larvae are highly reactive to optic stimuli, light control is pivotal in employing noninvasive optogenetics. This point is covered in detail, starting from the general rules of light delivery and maintenance prior to the tests.

Key words

Optogenetics Larval zebrafish Behavior Photoactivated adenylyl cyclases Stress 


  1. 1.
    White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond Ser B Biol Sci 314(1165):1–340CrossRefGoogle Scholar
  2. 2.
    de Bono M, Maricq AV (2005) Neuronal substrates of complex behaviors in C. elegans. Annu Rev Neurosci 28:451–501. doi: 10.1146/annurev.neuro.27.070203.144259 CrossRefPubMedGoogle Scholar
  3. 3.
    Sengupta P, Samuel AD (2009) Caenorhabditis elegans: a model system for systems neuroscience. Curr Opin Neurobiol 19(6):637–643. doi: 10.1016/j.conb.2009.09.009 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Yemini E, Jucikas T, Grundy LJ, Brown AE, Schafer WR (2013) A database of Caenorhabditis elegans behavioral phenotypes. Nat Methods 10(9):877–879. doi: 10.1038/nmeth.2560 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Nagel G, Brauner M, Liewald JF, Adeishvili N, Bamberg E, Gottschalk A (2005) Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr Biol 15(24):2279–2284. doi: 10.1016/j.cub.2005.11.032 CrossRefPubMedGoogle Scholar
  6. 6.
    de Bono M, Schafer WR, Gottschalk A (2013) Optogenetic actuation, inhibition, modulation and readout for neuronal networks generating behavior in the nematode Caenorhabditis elegans. In: Hegemann P, Sigrist SJ (eds) Optogenetics. De Gruyter, Berlin, pp 61–74Google Scholar
  7. 7.
    Fero K, Yokogawa T, Burgess HA (2011) The behavioral repertoire of larval zebrafish. In: Kalueff AV, Cachat JM (eds) Zebrafish models in neurobehavioral research. Springer Science + Business Media, pp 249–291Google Scholar
  8. 8.
    Budick SA, O'Malley DM (2000) Locomotor repertoire of the larval zebrafish: swimming, turning and prey capture. J Exp Biol 203(Pt 17):2565–2579PubMedGoogle Scholar
  9. 9.
    Kimmel CB, Patterson J, Kimmel RO (1974) The development and behavioral characteristics of the startle response in the zebra fish. Dev Psychobiol 7(1):47–60. doi: 10.1002/dev.420070109 CrossRefPubMedGoogle Scholar
  10. 10.
    Burgess HA, Granato M (2007) Sensorimotor gating in larval zebrafish. J Neurosci 27(18):4984–4994. doi: 10.1523/JNEUROSCI.0615-07.2007 CrossRefPubMedGoogle Scholar
  11. 11.
    Neuhauss SC (2003) Behavioral genetic approaches to visual system development and function in zebrafish. J Neurobiol 54(1):148–160. doi: 10.1002/neu.10165 CrossRefPubMedGoogle Scholar
  12. 12.
    Portugues R, Engert F (2009) The neural basis of visual behaviors in the larval zebrafish. Curr Opin Neurobiol 19(6):644–647. doi: 10.1016/j.conb.2009.10.007 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Borla MA, Palecek B, Budick S, O’Malley DM (2002) Prey capture by larval zebrafish: evidence for fine axial motor control. Brain Behav Evol 60(4):207–229. doi:66699CrossRefPubMedGoogle Scholar
  14. 14.
    McElligott MB, O’Malley DM (2005) Prey tracking by larval zebrafish: axial kinematics and visual control. Brain Behav Evol 66(3):177–196. doi: 10.1159/000087158 CrossRefPubMedGoogle Scholar
  15. 15.
    Bianco IH, Kampff AR, Engert F (2011) Prey capture behavior evoked by simple visual stimuli in larval zebrafish. Front Syst Neurosci 5:101. doi: 10.3389/fnsys.2011.00101 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Dunn TW, Mu Y, Narayan S, Randlett O, Naumann EA, Yang CT, Schier AF, Freeman J, Engert F, Ahrens MB (2016) Brain-wide mapping of neural activity controlling zebrafish exploratory locomotion. Elife 5. doi: 10.7554/eLife.12741
  17. 17.
    Ahrens MB, Engert F (2015) Large-scale imaging in small brains. Curr Opin Neurobiol 32:78–86. doi: 10.1016/j.conb.2015.01.007 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Severi KE, Portugues R, Marques JC, O'Malley DM, Orger MB, Engert F (2014) Neural control and modulation of swimming speed in the larval zebrafish. Neuron 83(3):692–707. doi: 10.1016/j.neuron.2014.06.032 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Portugues R, Feierstein CE, Engert F, Orger MB (2014) Whole-brain activity maps reveal stereotyped, distributed networks for visuomotor behavior. Neuron 81(6):1328–1343. doi: 10.1016/j.neuron.2014.01.019 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ahrens MB, Li JM, Orger MB, Robson DN, Schier AF, Engert F, Portugues R (2012) Brain-wide neuronal dynamics during motor adaptation in zebrafish. Nature 485(7399):471–477. doi: 10.1038/nature11057 PubMedPubMedCentralGoogle Scholar
  21. 21.
    Renninger SL, Orger MB (2013) Two-photon imaging of neural population activity in zebrafish. Methods 62(3):255–267. doi: 10.1016/j.ymeth.2013.05.016 CrossRefPubMedGoogle Scholar
  22. 22.
    Portugues R, Severi KE, Wyart C, Ahrens MB (2013) Optogenetics in a transparent animal: circuit function in the larval zebrafish. Curr Opin Neurobiol 23(1):119–126. doi: 10.1016/j.conb.2012.11.001 CrossRefPubMedGoogle Scholar
  23. 23.
    Friedrich RW, Jacobson GA, Zhu P (2010) Circuit neuroscience in zebrafish. Curr Biol 20(8):R371–R381. doi: 10.1016/j.cub.2010.02.039 CrossRefPubMedGoogle Scholar
  24. 24.
    Simmich J, Staykov E, Scott E (2012) Zebrafish as an appealing model for optogenetic studies. Prog Brain Res 196:145–162. doi: 10.1016/B978-0-444-59426-6.00008-2 CrossRefPubMedGoogle Scholar
  25. 25.
    Wyart C, Del Bene F, Warp E, Scott EK, Trauner D, Baier H, Isacoff EY (2009) Optogenetic dissection of a behavioural module in the vertebrate spinal cord. Nature 461(7262):407–410. doi: 10.1038/nature08323 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Fidelin K, Djenoune L, Stokes C, Prendergast A, Gomez J, Baradel A, Del Bene F, Wyart C (2015) State-dependent modulation of locomotion by GABAergic spinal sensory neurons. Curr Biol 25(23):3035–3047. doi: 10.1016/j.cub.2015.09.070 CrossRefPubMedGoogle Scholar
  27. 27.
    Goncalves PJ, Arrenberg AB, Hablitzel B, Baier H, Machens CK (2014) Optogenetic perturbations reveal the dynamics of an oculomotor integrator. Front Neural Circuits 8:10. doi: 10.3389/fncir.2014.00010 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Miri A, Daie K, Arrenberg AB, Baier H, Aksay E, Tank DW (2011) Spatial gradients and multidimensional dynamics in a neural integrator circuit. Nat Neurosci 14(9):1150–1159. doi: 10.1038/nn.2888 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Arrenberg AB, Del Bene F, Baier H (2009) Optical control of zebrafish behavior with halorhodopsin. Proc Natl Acad Sci U S A 106(42):17968–17973. doi: 10.1073/pnas.0906252106 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Schoonheim PJ, Arrenberg AB, Del Bene F, Baier H (2010) Optogenetic localization and genetic perturbation of saccade-generating neurons in zebrafish. J Neurosci 30(20):7111–7120. doi: 10.1523/JNEUROSCI.5193-09.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Thiele TR, Donovan JC, Baier H (2014) Descending control of swim posture by a midbrain nucleus in zebrafish. Neuron 83(3):679–691. doi: 10.1016/j.neuron.2014.04.018 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kubo F, Hablitzel B, Dal Maschio M, Driever W, Baier H, Arrenberg AB (2014) Functional architecture of an optic flow-responsive area that drives horizontal eye movements in zebrafish. Neuron 81(6):1344–1359. doi: 10.1016/j.neuron.2014.02.043 CrossRefPubMedGoogle Scholar
  33. 33.
    McFarland DJ (1977) Decision making in animals. Nature 269:15–21CrossRefGoogle Scholar
  34. 34.
    De Marco RJ, Thiemann T, Groneberg AH, Herget U, Ryu S (2016) Optogenetically enhanced pituitary corticotroph cell activity post-stress onset causes rapid organizing effects on behavior. Nat Commun 7:12620. doi:10.1038/ncomms12620 Google Scholar
  35. 35.
    Charmandari E, Tsigos C, Chrousos G (2005) Endocrinology of the stress response. Annu Rev Physiol 67:259–284. doi: 10.1146/annurev.physiol.67.040403.120816 Google Scholar
  36. 36.
    Iseki M, Matsunaga S, Murakami A, Ohno K, Shiga K, Yoshida K, Sugai M, Takahashi T, Hori T, Watanabe M (2002) A blue-light-activated adenylyl cyclase mediates photoavoidance in Euglena gracilis. Nature 415(6875):1047–1051. doi: 10.1038/4151047a Google Scholar
  37. 37.
    Stierl M, Stumpf P, Udwari D, Gueta R, Hagedorn R, Losi A, Gartner W, Petereit L, Efetova M, Schwarzel M, Oertner TG, Nagel G, Hegemann P (2011) Light modulation of cellular cAMP by a small bacterial photoactivated adenylyl cyclase, bPAC, of the soil bacterium Beggiatoa. J Biol Chem 286(2):1181–1188. doi: 10.1074/jbc.M110.185496 Google Scholar
  38. 38.
    Ryu MH, Moskvin OV, Siltberg-Liberles J, Gomelsky M (2010) Natural and engineered photoactivated nucleotidyl cyclases for optogenetic applications. J Biol Chem 285(53):41501–41508. doi:10.1074/jbc.M110.177600 Google Scholar
  39. 39.
    Pujol-Marti J, Faucherre A, Aziz-Bose R, Asgharsharghi A, Colombelli J, Trapani JG, Lopez-Schier H (2014) Converging axons collectively initiate and maintain synaptic selectivity in a constantly remodeling sensory organ. Curr Biol 24(24):2968–2974. doi: 10.1016/j.cub.2014.11.012Google Scholar
  40. 40.
    Xiao Y, Tian W, Lopez-Schier H (2015) Optogenetic stimulation of neuronal repair. Curr Biol 25(22):R1068–R1069. doi: 10.1016/j.cub.2015.09.038Google Scholar
  41. 41.
    De Marco RJ, Groneberg AH, Yeh CM, Castillo Ramirez LA, Ryu S (2013) Optogenetic elevation of endogenous glucocorticoid level in larval zebrafish. Front Neural Circuits 7:82. doi:10.3389/fncir.2013.00082Google Scholar
  42. 42.
    Gutierrez-Triana JA, Herget U, Castillo-Ramirez LA, Lutz M, Yeh CM, De Marco RJ, Ryu S (2015) Manipulation of Interrenal cell function in developing zebrafish using genetically targeted ablation and an optogenetic tool. Endocrinology 156(9):3394–3401. doi: 10.1210/EN.2015-1021Google Scholar
  43. 43.
    Kwan KM, Fujimoto E, Grabher C, Mangum BD, Hardy ME, Campbell DS, Parant JM, Yost HJ, Kanki JP, Chien CB (2007) The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev Dyn 236(11):3088–3099. doi: 10.1002/dvdy.21343Google Scholar
  44. 44.
    Burgess HA, Granato M (2007) Modulation of locomotor activity in larval zebrafish during light adaptation. J Exp Biol 210(Pt 14):2526–2539. doi: 10.1242/jeb.003939Google Scholar
  45. 45.
    De Marco RJ, Groneberg AH, Yeh CM, Trevino M, Ryu S (2014) The behavior of larval zebrafish reveals stressor-mediated anorexia during early vertebrate development. Front Behav Neurosci 8:367. doi: 10.3389/fnbeh.2014.00367Google Scholar
  46. 46.
    Groneberg AH, Herget U, Ryu S, De Marco RJ (2015) Positive taxis and sustained responsiveness to water motions in larval zebrafish. Front Neural Circuits 9:9. doi: 10.3389/fncir.2015.00009Google Scholar
  47. 47.
    Zhou Y, Cattley RT, Cario CL, Bai Q, Burton EA (2014) Quantification of larval zebrafish motor function in multiwell plates using open-source MATLAB applications. Nat Protoc 9(7):1533–1548. doi:10.1038/nprot.2014.094Google Scholar
  48. 48.
    Rosen JN, Sweeney MF, Mably JD (2009) Microinjection of zebrafish embryos to analyze gene function. J Vis Exp 25. doi: 10.3791/1115Google Scholar
  49. 49.
    Yuan S, Sun Z (2009) Microinjection of mRNA and morpholino antisense oligonucleotides in zebrafish embryos. J Vis Exp 27. doi: 10.3791/1113Google Scholar
  50. 50.
    Dawydow A, Gueta R, Ljaschenko D, Ullrich S, Hermann M, Ehmann N, Gao S, Fiala A, Langenhan T, Nagel G, Kittel RJ (2014) Channelrhodopsin-2-XXL, a powerful optogenetic tool for low-lightapplications. Proc Natl Acad Sci U S A 111(38):13972–13977. doi: 10.1073/pnas.1408269111Google Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.German Resilience Center, University Medical CenterJohannes Gutenberg University MainzMainzGermany
  2. 2.Developmental Genetics of the Nervous SystemMax Planck Institute for Medical ResearchHeidelbergGermany

Personalised recommendations