Skip to main content

Optogenetic Applications in the Nematode Caenorhabditis elegans

  • Protocol
  • First Online:

Part of the book series: Neuromethods ((NM,volume 133))

Abstract

The advantages of the nematode Caenorhabditis elegans, such as a well-characterized nervous system, complex behavioral patterns, powerful genetics, and experimental tractability, establish this animal as an excellent platform for optogenetic studies and manipulation. A roadmap for conducting optogenetic experiments in C. elegans is provided in this chapter. We give advice on the choice of appropriate optogenetic tools, generation of transgenic animals and the preparation of animals for experiments, and describe using the nematode for optogenetic tool engineering by detecting body wall muscle contraction. We also survey specific optogenetic applications in C. elegans that give insight in long-term behavior and development; all-optical interrogation, combining optogenetic neuronal manipulation with the simultaneous detection of neural activity by calcium sensors; the optogenetic generation of reactive oxygen species for cell and protein ablation and mutagenesis; optogenetic control of intracellular signaling pathways; and the harnessing of optogenetics for a drug-screening platform by pacing pharyngeal muscle contraction.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Corsi AK, Wightman B, Chalfie M (2015) A transparent window into biology: a primer on Caenorhabditis elegans. Genetics 200:387–407. doi:10.1534/genetics.115.176099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. de Bono M, Villu Maricq A (2005) Neuronal substrates of complex behaviors in C. elegans. Annu Rev Neurosci 28:451–501. doi:10.1146/annurev.neuro.27.070203.144259

    Article  PubMed  Google Scholar 

  3. Nagel G, Brauner M, Liewald JF et al (2005) Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr Biol 15:2279–2284. doi:10.1016/j.cub.2005.11.032

    Article  CAS  PubMed  Google Scholar 

  4. Kimura KD, Busch KE (2017) From Connectome to function: using optogenetics to shed light on the Caenorhabditis elegans nervous system. In: Appasani K (ed) Optogenetics: from neuronal function to mapping and disease biology. Cambridge University Press, Cambridge

    Google Scholar 

  5. Husson SJ, Gottschalk A, Leifer AM (2013) Optogenetic manipulation of neural activity in C. elegans: from synapse to circuits and behaviour. Biol Cell 105:235–250. doi:10.1111/boc.201200069

    Article  CAS  PubMed  Google Scholar 

  6. Tsukada Y, Mori I (2015) Optogenetics in Caenorhabditis elegans. In: Yawo H, Kandori H, Koizumi A (eds) Optogenetics. Springer Japan, Tokyo, pp 213–226

    Chapter  Google Scholar 

  7. Fang-Yen C, Alkema MJ, Samuel ADT (2015) Illuminating neural circuits and behaviour in Caenorhabditis elegans with optogenetics. Philos Trans R Soc Lond Ser B Biol Sci 370:20140212. doi:10.1098/rstb.2014.0212

    Article  Google Scholar 

  8. Glock C, Nagpal J, Gottschalk A (2015) Microbial rhodopsin optogenetic tools: application for analyses of synaptic transmission and of neuronal network activity in behavior. In: Cell senescence. Humana Press, Totowa, NJ, pp 87–103

    Google Scholar 

  9. Mello CC, Kramer JM, Stinchcomb D, Ambros V (1991) Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J 10:3959–3970

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kim E, Sun L, Gabel CV, Fang-Yen C (2013) Long-term imaging of Caenorhabditis elegans using nanoparticle-mediated immobilization. PLoS One 8:e53419–e53416. doi:10.1371/journal.pone.0053419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stiernagle T (2006) Maintenance of C. elegans. WormBook 11:1–11. doi:10.1895/wormbook.1.101.1

    Google Scholar 

  12. Krajniak J, Lu H (2010) Long-term high-resolution imaging and culture of C. elegans in chip-gel hybrid microfluidic device for developmental studies. Lab Chip 10:1862–1867. doi:10.1039/c001986k

    Article  CAS  PubMed  Google Scholar 

  13. Mondal S, Ahlawat S, Rau K et al (2011) Imaging in vivo neuronal transport in genetic model organisms using microfluidic devices. Traffic 12:372–385. doi:10.1111/j.1600-0854.2010.01157.x

    Article  CAS  PubMed  Google Scholar 

  14. Hwang H, Barnes DE, Matsunaga Y et al (2016) Muscle contraction phenotypic analysis enabled by optogenetics reveals functional relationships of sarcomere components in Caenorhabditis elegans. Sci Rep 6:1–10. doi:10.1038/srep19900

    Article  Google Scholar 

  15. Ma H, Jiang L, Shi W et al (2009) A programmable microvalve-based microfluidic array for characterization of neurotoxin-induced responses of individual C. elegans. Biomicrofluidics 3:044114–044118. doi:10.1063/1.3274313

    Article  PubMed Central  Google Scholar 

  16. Rezai P, Siddiqui A, Selvaganapathy PR, Gupta BP (2010) Electrotaxis of Caenorhabditis elegans in a microfluidic environment. Lab Chip 10:220–226. doi:10.1039/B917486A

    Article  CAS  PubMed  Google Scholar 

  17. Rezai P, Salam S, Selvaganapathy PR, Gupta BP (2012) Electrical sorting of Caenorhabditis elegans. Lab Chip 12:1831–1810. doi:10.1039/c2lc20967e

    Article  CAS  PubMed  Google Scholar 

  18. Song P, Dong X, Liu X (2016) A microfluidic device for automated, high-speed microinjection of Caenorhabditis elegans. Biomicrofluidics 10:011912–011912. doi:10.1063/1.4941984

    Article  PubMed  PubMed Central  Google Scholar 

  19. Miyawaki A (2003) Fluorescence imaging of physiological activity in complex systems using GFP-based probes. Curr Opin Neurobiol 13:591–596. doi:10.1016/j.conb.2003.09.005

    Article  CAS  PubMed  Google Scholar 

  20. Allen PB, Sgro AE, Chao DL et al (2008) Single-synapse ablation and long-term imaging in live C. elegans. J Neurosci Methods 173:20–26. doi:10.1016/j.jneumeth.2008.05.007

    Article  PubMed  PubMed Central  Google Scholar 

  21. Larsch J, Ventimiglia D, Bargmann CI, Albrecht DR (2013) High-throughput imaging of neuronal activity in Caenorhabditis elegans. Proc Natl Acad Sci U S A 110:E4266–E4273. doi:10.1073/pnas.1318325110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kopito RB, Levine E (2014) Durable spatiotemporal surveillance of Caenorhabditis elegans response to environmental cues. Lab Chip 14:764–770. doi:10.1039/C3LC51061A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chronis N, Zimmer M, Bargmann CI (2007) Microfluidics for in vivo imaging of neuronal and behavioral activity in Caenorhabditis elegans. Nat Methods 4:727–731. doi:10.1038/nmeth1075

    Article  CAS  PubMed  Google Scholar 

  24. Chalasani SH, Chronis N, Tsunozaki M et al (2007) Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans. Nature 450:63–70. doi:10.1038/nature06292

    Article  CAS  PubMed  Google Scholar 

  25. Busch KE, Laurent P, Soltesz Z et al (2012) Tonic signaling from O2 sensors sets neural circuit activity and behavioral state. Nat Neurosci 15:581–591. doi:10.1038/nn.3061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lockery SR, Elizabeth Hulme S, Roberts WM et al (2012) A microfluidic device for whole-animal drug screening using electrophysiological measures in the nematode C. elegans. Lab Chip 12:2211–2217. doi:10.1039/c2lc00001f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kerr RA (2006) Imaging the activity of neurons and muscles. WormBook:1–13. doi:10.1895/wormbook.1.113.1

  28. Husson SJ, Costa WS, Schmitt C, Gottschalk A (2013) Keeping track of worm trackers. WormBook:1–17. doi:10.1895/wormbook.1.156.1

  29. Redemann S, Schloissnig S, Ernst S et al (2011) Codon adaptation–based control of protein expression in C. elegans. Nat Methods 8:250–252. doi:10.1038/nmeth.1565

    Article  CAS  PubMed  Google Scholar 

  30. Li D, Wang M (2012) Construction of a bicistronic vector for the co-expression of two genes in Caenorhabditis elegans using a newly identified IRES. Biotech 52:173–176. doi:10.2144/000113821

    CAS  Google Scholar 

  31. Schüler C, Fischer E, Shaltiel L et al (2015) Arrhythmogenic effects of mutated L-type Ca2+-channels on an optogenetically paced muscular pump in Caenorhabditis elegans. Sci Rep 5:14427. doi:10.1038/srep14427

    Article  PubMed  PubMed Central  Google Scholar 

  32. Nagel G, Ollig D, Fuhrmann M et al (2002) Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296:2395–2398. doi:10.1126/science.1072068

    Article  CAS  PubMed  Google Scholar 

  33. Nagel G, Szellas T, Huhn W et al (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100:13940–13945. doi:10.1073/pnas.1936192100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kleinlogel S, Feldbauer K, Dempski RE et al (2011) Ultra light-sensitive and fast neuronal activation with the Ca2+-permeable channelrhodopsin CatCh. Nat Neurosci 14:513–518. doi:10.1038/nn.2776

    Article  CAS  PubMed  Google Scholar 

  35. Klapoetke NC, Murata Y, Kim SS et al (2014) Independent optical excitation of distinct neural populations. Nat Methods 11:338–346. doi:10.1038/nmeth.2836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Erbguth K, Prigge M, Schneider F et al (2012) Bimodal activation of different neuron classes with the spectrally red-shifted Channelrhodopsin chimera C1V1 in Caenorhabditis elegans. PLoS One 7:e46827–e46829. doi:10.1371/journal.pone.0046827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schultheis C, Liewald JF, Bamberg E et al (2011) Optogenetic long-term manipulation of behavior and animal development. PLoS One 6:e18766. doi:10.1371/journal.pone.0018766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Berndt A, Yizhar O, Gunaydin LA et al (2009) Bi-stable neural state switches. Nat Neurosci 12:229–234. doi:10.1038/nn.2247

    Article  CAS  PubMed  Google Scholar 

  39. Zhang F, Wang L-P, Brauner M et al (2007) Multimodal fast optical interrogation of neural circuitry. Nature 446:633–639. doi:10.1038/nature05744

    Article  CAS  PubMed  Google Scholar 

  40. Husson SJ, Liewald JF, Schultheis C et al (2012) Microbial light-Activatable proton pumps as neuronal inhibitors to functionally dissect neuronal networks in C. elegans. PLoS One 7:e40937–e40914. doi:10.1371/journal.pone.0040937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chow BY, Han X, Dobry AS et al (2010) High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463:98–102. doi:10.1038/nature08652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Stirman JN, Crane MM, Husson SJ et al (2011) Real-time multimodal optical control of neurons and muscles in freely behaving Caenorhabditis elegans. Nat Methods 8:153–158. doi:10.1038/nmeth.1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Okazaki A, Sudo Y, Takagi S (2012) Optical silencing of C. elegans cells with arch proton pump. PLoS One 7:e35370. doi:10.1371/journal.pone.0035370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Stephens GJ, Johnson-Kerner B, Bialek W, Ryu WS (2008) Dimensionality and dynamics in the behavior of C. elegans. PLoS Comput Biol 4:e1000028–e1000010. doi:10.1371/journal.pcbi.1000028

    Article  PubMed  PubMed Central  Google Scholar 

  45. Stirman JN, Crane MM, Husson SJ et al (2012) A multispectral optical illumination system with precise spatiotemporal control for the manipulation of optogenetic reagents. Nat Protoc 7:207–220. doi:10.1038/nprot.2011.433

    Article  CAS  PubMed  Google Scholar 

  46. Liewald JF, Brauner M, Stephens GJ et al (2008) Optogenetic analysis of synaptic function. Nat Methods 5:895–902. doi:10.1038/nmeth.1252

    Article  CAS  PubMed  Google Scholar 

  47. Richmond J (2006) Electrophysiological recordings from the neuromuscular junction of C. elegans. WormBook 6:1–8. doi:10.1895/wormbook.1.112.1

    Google Scholar 

  48. Richmond JE, Jorgensen EM (1999) One GABA and two acetylcholine receptors function at the C. elegans neuromuscular junction. Nat Neurosci 2:791–797. doi:10.1038/12160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lignani G, Ferrea E, Difato F et al (2013) Long-term optical stimulation of channelrhodopsin-expressing neurons to study network plasticity. Front Mol Neurosci 6:22. doi:10.3389/fnmol.2013.00022

    Article  PubMed  PubMed Central  Google Scholar 

  50. Miyashita T, Shao YR, Chung J et al (2013) Long-term channelrhodopsin-2 (ChR2) expression can induce abnormal axonal morphology and targeting in cerebral cortex. Front Neural Circuits 7:8. doi:10.3389/fncir.2013.00008

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Gorostiza P, Isacoff EY (2008) Optical switches for remote and noninvasive control of cell signaling. Science 322:395–399. doi:10.1126/science.1166022

    Article  CAS  PubMed  Google Scholar 

  52. Mourot A, Tochitsky I, Kramer RH (2013) Light at the end of the channel: optical manipulation of intrinsic neuronal excitability with chemical photoswitches. Front Mol Neurosci 6:5. doi:10.3389/fnmol.2013.00005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Inoue M, Takeuchi A, Horigane S-I et al (2015) Rational design of a high-affinity, fast, red calcium indicator R-CaMP2. Nat Methods 12:64–70. doi:10.1038/nmeth.3185

    Article  CAS  PubMed  Google Scholar 

  54. Li Z, Liu J, Zheng M, Xu XZS (2014) Encoding of both analog- and digital-like behavioral outputs by one C. elegans interneuron. Cell 159:751–765. doi:10.1016/j.cell.2014.09.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wojtovich AP, Foster TH (2014) Optogenetic control of ROS production. Redox Biol 2:368–376. doi:10.1016/j.redox.2014.01.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pletnev S, Gurskaya NG, Pletneva NV et al (2009) Structural basis for phototoxicity of the genetically encoded photosensitizer KillerRed. J Biol Chem 284:32028–32039. doi:10.1074/jbc.M109.054973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shu X, Lev-Ram V, Deerinck TJ et al (2011) A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms. PLoS Biol 9:e1001041. doi:10.1371/journal.pbio.1001041.g005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pimenta FM, Jensen RL, Breitenbach T et al (2013) Oxygen-dependent photochemistry and photophysics of “MiniSOG,” a Protein-Encased Flavin. Photochem Photobiol 89:1116–1126. doi:10.1111/php.12111

    Article  CAS  PubMed  Google Scholar 

  59. Bulina ME, Chudakov DM, Britanova OV et al (2006) A genetically encoded photosensitizer. Nat Biotechnol 24:95–99. doi:10.1038/nbt1175

    Article  CAS  PubMed  Google Scholar 

  60. Kobayashi J, Shidara H, Morisawa Y et al (2013) A method for selective ablation of neurons in C. elegans using the phototoxic fluorescent protein, KillerRed. Neurosci Lett 548:261–264. doi:10.1016/j.neulet.2013.05.053

    Article  CAS  PubMed  Google Scholar 

  61. Shibuya T, Tsujimoto Y (2012) Deleterious effects of mitochondrial ROS generated by KillerRed photodynamic action in human cell lines and C. elegans. J Photochem Photobiol B Biol 117:1–12. doi:10.1016/j.jphotobiol.2012.08.005

    Article  CAS  Google Scholar 

  62. Williams DC, Bejjani RE, Ramirez PM et al (2013) Rapid and permanent neuronal inactivation in vivo via subcellular generation of reactive oxygen with the use of KillerRed. Cell Rep 5:553–563. doi:10.1016/j.celrep.2013.09.023

    Article  CAS  PubMed  Google Scholar 

  63. Qi YB, Garren EJ, Shu X et al (2012) Photo-inducible cell ablation in Caenorhabditis elegans using the genetically encoded singlet oxygen generating protein miniSOG. Proc Natl Acad Sci U S A 109:7499–7504. doi:10.1073/pnas.1204096109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Xu S, Chisholm AD (2016) Highly efficient optogenetic cell ablation in C. elegans using membrane-targeted miniSOG. Sci Rep 6:21271. doi:10.1038/srep21271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lin JY, Sann SB, Zhou K et al (2013) Optogenetic inhibition of synaptic release with chromophore-assisted light inactivation (CALI). Neuron 79:241–253. doi:10.1016/j.neuron.2013.05.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wojtovich AP, Wei AY, Sherman TA et al (2016) Chromophore-assisted light inactivation of mitochondrial electron transport chain complex II in Caenorhabditis elegans. Sci Rep 6:29695. doi:10.1038/srep29695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Takemoto K, Matsuda T, Sakai N et al (2013) SuperNova, a monomeric photosensitizing fluorescent protein for chromophore-assisted light inactivation. Sci Rep 3:2629. doi:10.1038/srep02629

    Article  PubMed  PubMed Central  Google Scholar 

  68. Hermann A, Liewald JF, Gottschalk A (2015) A photosensitive degron enables acute light-induced protein degradation in the nervous system. Curr Biol 25:R749–R750. doi:10.1016/j.cub.2015.07.040

    Article  CAS  PubMed  Google Scholar 

  69. Renicke C, Schuster D, Usherenko S et al (2013) A LOV2 domain-based Optogenetic tool to control protein degradation and cellular function. Chem Biol 20:619–626. doi:10.1016/j.chembiol.2013.03.005

    Article  CAS  PubMed  Google Scholar 

  70. Noma K, Jin Y (2015) Optogenetic mutagenesis in Caenorhabditis elegans. Nat Commun 6:8868. doi:10.1038/ncomms9868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Weissenberger S, Schultheis C, Liewald JF et al (2011) PACα- an optogenetic tool for in vivo manipulation of cellular cAMP levels, neurotransmitter release, and behavior in Caenorhabditis elegans. J Neurochem 116:616–625. doi:10.1111/j.1471-4159.2010.07148.x

    Article  CAS  PubMed  Google Scholar 

  72. Schade MA, Reynolds NK, Dollins CM, Miller KG (2005) Mutations that rescue the paralysis of Caenorhabditis elegans ric-8 (Synembryn) mutants activate the Gαs pathway and define a third major branch of the synaptic signaling network. Genetics 169:631–649. doi:10.1534/genetics.104.032334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ryu M-H, Kang I-H, Nelson MD et al (2014) Engineering adenylate cyclases regulated by near-infrared window light. Proc Natl Acad Sci U S A 111:10167–10172. doi:10.1073/pnas.1324301111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gao S, Nagpal J, Schneider MW et al (2015) Optogenetic manipulation of cGMP in cells and animals by the tightly light-regulated guanylyl-cyclase opsin CyclOp. Nat Commun 6:8046. doi:10.1038/ncomms9046

    Article  PubMed  PubMed Central  Google Scholar 

  75. Ryu M-H, Moskvin OV, Siltberg-Liberles J, Gomelsky M (2010) Natural and engineered photoactivated nucleotidyl cyclases for optogenetic applications. J Biol Chem 285:41501–41508. doi:10.1074/jbc.M110.177600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Frank JA, Yushchenko DA, Hodson DJ et al (2016) Photoswitchable diacylglycerols enable optical control of protein kinase C. Nat Chem Biol 12:755–762. doi:10.1038/nchembio.2141

    Article  CAS  PubMed  Google Scholar 

  77. Avery L (1993) Motor neuron M3 controls pharyngeal muscle relaxation timing in Caenorhabditis elegans. J Exp Biol 175:283–297

    CAS  PubMed  Google Scholar 

  78. Avery L, Horvitz HR (1989) Pharyngeal pumping continues after laser killing of the pharyngeal nervous system of C. elegans. Neuron 3:473–485. doi:10.1016/0896-6273(89)90206-7

    Article  CAS  PubMed  Google Scholar 

  79. Cook A (2006) Electrophysiological recordings from the pharynx. WormBook 17:1–7. doi:10.1895/wormbook.1.110.1

    Google Scholar 

  80. Dillon J, Andrianakis I, Bull K et al (2009) AutoEPG: software for the analysis of electrical activity in the microcircuit underpinning feeding behaviour of Caenorhabditis elegans. PLoS One 4:e8482–e8413. doi:10.1371/journal.pone.0008482

    Article  PubMed  PubMed Central  Google Scholar 

  81. Splawski I, Timothy KW, Sharpe LM et al (2004) CaV1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 119:19–31. doi:10.1016/j.cell.2004.09.011

    Article  CAS  PubMed  Google Scholar 

  82. Splawski I, Timothy KW, Decher N et al (2005) Severe arrhythmia disorder caused by cardiac L-type calcium channel mutations. Proc Natl Acad Sci U S A 102:8089–8096. doi:10.1073/pnas.0502506102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Beavo JA, Brunton LL (2002) Cyclic nucleotide research – still expanding after half a century. Nat Rev Mol Cell Biol 3:710–718. doi:10.1038/nrm911

    Article  CAS  PubMed  Google Scholar 

  84. Kocabas A, Shen C-H, Guo ZV, Ramanathan S (2012) Controlling interneuron activity in Caenorhabditis elegans to evoke chemotactic behaviour. Nature 490:273–277. doi:10.1038/nature11431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Satoh Y, Sato H, Kunitomo H et al (2014) Regulation of experience-dependent bidirectional Chemotaxis by a neural circuit switch in Caenorhabditis elegans. J Neurosci 34:15631–15637. doi:10.1523/JNEUROSCI.1757-14.2014

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Wellcome Trust (109614/Z/15/Z) and the Medical Research Council (MR/N004574/1) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Emanuel Busch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Fischer, K.E., Vladis, N.A., Busch, K.E. (2018). Optogenetic Applications in the Nematode Caenorhabditis elegans . In: Stroh, A. (eds) Optogenetics: A Roadmap. Neuromethods, vol 133. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7417-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7417-7_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7415-3

  • Online ISBN: 978-1-4939-7417-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics