Skip to main content

Optogenetics: Lighting a Path from the Laboratory to the Clinic

  • Protocol
  • First Online:
Optogenetics: A Roadmap

Part of the book series: Neuromethods ((NM,volume 133))

Abstract

The advent of optogenetics has brought about an unprecedented ability to control neuronal activity with great spatial and temporal precision. Questions about neuronal circuitry that had previously been impossible or extremely difficult to test suddenly have become viable experimental questions. Although optogenetics was originally pioneered for use in neurons, it is now clear that systems as diverse as atrial cardiomyocytes, pancreatic islet cells, and tumor cells can be manipulated with this technique. A great many of the studies that employ optogenetics propose that this new technology can be used as therapy for a variety of pathologies. For example, optogenetic strategies in animal models have restored sight to blind rodents, stopped seizures in epileptic animals, and abolished behavioral manifestations of addiction in cocaine-treated mice. It is no surprise, then, that one of the most oft-asked questions is if and when optogenetics can be used as a treatment in the clinic. Will optogenetic technology ever be safe enough to use in human therapies? In this closing chapter, we will briefly review the current state of optogenetic technology in relation to translational efforts, discuss the ethical issues surrounding the use of optogenetics in human patients, and finally examine several lines of experimental evidence that illustrate the potential clinical uses of optogenetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268. doi:10.1038/nn1525

    Article  CAS  PubMed  Google Scholar 

  2. Lin JY (2011) A user’s guide to channelrhodopsin variants: features, limitations and future developments. Exp Physiol 96:19–25. doi:10.1113/expphysiol.2009.051961

    Article  PubMed  Google Scholar 

  3. Tromberg BJ, Shah N, Lanning R, Cerussi A, Espinoza J, Pham T, Svaasand L, Butler J (2000) Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy. Neoplasia 2:26–40. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1531865&tool=pmcentrez&rendertype=abstract (Accessed 22 May 2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Klapoetke NC, Murata Y, Kim SS, Pulver SR, Birdsey-Benson A, Cho YK, Morimoto TK, Chuong AS, Carpenter EJ, Tian Z, Wang J, Xie Y, Yan Z, Zhang Y, Chow BY, Surek B, Melkonian M, Jayaraman V, Constantine-Paton M, Wong GK-S, Boyden ES (2014) Independent optical excitation of distinct neural populations. Nat Methods 11:338–346. doi:10.1038/nmeth.2836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lin JY, Knutsen PM, Muller A, Kleinfeld D, Tsien RY (2013) ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat Neurosci 16:1499–1508. doi:10.1038/nn.3502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gunaydin LA, Yizhar O, Berndt A, Sohal VS, Deisseroth K, Hegemann P (2010) Ultrafast optogenetic control. Nat Neurosci 13:387–392. doi:10.1038/nn.2495

    Article  CAS  PubMed  Google Scholar 

  7. Kleinlogel S (2016) Optogenetic user’s guide to Opto-GPCRs. Front Biosci Landmark Ed 21:794–805. http://www.ncbi.nlm.nih.gov/pubmed/26709806 (Accessed 25 Feb 2016

    Article  PubMed  Google Scholar 

  8. Salganik M, Hirsch ML, Samulski RJ (2015) Adeno-associated virus as a mammalian DNA vector. Microbiol Spectr 3(4). doi:10.1128/microbiolspec.MDNA3-0052-2014

  9. Kotterman MA, Chalberg TW, Schaffer DV (2015) Viral vectors for gene therapy: translational and clinical outlook. Annu Rev Biomed Eng 17:63–89. doi:10.1146/annurev-bioeng-071813-104938

    Article  CAS  PubMed  Google Scholar 

  10. Henderson KW, Gupta J, Tagliatela S, Litvina E, Zheng X, Van Zandt MA, Woods N, Grund E, Lin D, Royston S, Yanagawa Y, Aaron GB, Naegele JR (2014) Long-term seizure suppression and optogenetic analyses of synaptic connectivity in epileptic mice with hippocampal grafts of GABAergic interneurons. J Neurosci 34:13492–13504. doi:10.1523/JNEUROSCI.0005-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Steinbeck JA, Choi SJ, Mrejeru A, Ganat Y, Deisseroth K, Sulzer D, Mosharov EV, Studer L (2015) Optogenetics enables functional analysis of human embryonic stem cell–derived grafts in a Parkinson’s disease model. Nat Biotechnol 33:204–209. doi:10.1038/nbt.3124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Byers B, Lee HJ, Liu J, Weitz AJ, Lin P, Zhang P, Shcheglovitov A, Dolmetsch R, Pera RR, Lee JH (2015) Direct in vivo assessment of human stem cell graft-host neural circuits. Neuroimage 114:328–337. doi:10.1016/j.neuroimage.2015.03.079

    Article  PubMed  PubMed Central  Google Scholar 

  13. Azad TD, Veeravagu A, Steinberg GK (2016) Neurorestoration after stroke. Neurosurg Focus 40:E2. doi:10.3171/2016.2.FOCUS15637

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wu F, Stark E, Ku P-C, Wise KD, Buzsáki G, Yoon E (2015) Monolithically integrated μLEDs on silicon neural probes for high-resolution optogenetic studies in behaving animals. Neuron 88:1136–1148. doi:10.1016/j.neuron.2015.10.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Montgomery KL, Yeh AJ, Ho JS, Tsao V, Mohan Iyer S, Grosenick L, Ferenczi EA, Tanabe Y, Deisseroth K, Delp SL, Poon ASY (2015) Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. Nat Methods 12:969–974. doi:10.1038/nmeth.3536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Towne C, Aguado J, Arguello A, Discenza C, Gal T, Gehrke S, Khan S, Kaplitt M (2016) Translating an optogenetic gene therapy approach for treatment of neuropathic pain in humans. Am Soc Gene Cell Ther 186:2016

    Google Scholar 

  17. Il Park S, Brenner DS, Shin G, Morgan CD, Copits BA, Chung HU, Pullen MY, Noh KN, Davidson S, Oh SJ, Yoon J, Jang K-I, Samineni VK, Norman M, Grajales-Reyes JG, Vogt SK, Sundaram SS, Wilson KM, Ha JS, Xu R, Pan T, Kim T-I, Huang Y, Montana MC, Golden JP, Bruchas MR, Gereau RW, Rogers JA (2015) Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nat Biotechnol 33:1280–1286. doi:10.1038/nbt.3415

    Article  CAS  Google Scholar 

  18. Wheeler MA, Smith CJ, Ottolini M, Barker BS, Purohit AM, Grippo RM, Gaykema RP, Spano AJ, Beenhakker MP, Kucenas S, Patel MK, Deppmann CD, Güler AD (2016) Genetically targeted magnetic control of the nervous system. Nat Neurosci 19:756–761. doi:10.1038/nn.4265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Connolly KR, Helmer A, Cristancho MA, Cristancho P, O’Reardon JP (2012) Effectiveness of transcranial magnetic stimulation in clinical practice post-FDA approval in the United States: results observed with the first 100 consecutive cases of depression at an academic medical center. J Clin Psychiatry 73:e567–e573. doi:10.4088/JCP.11m07413

    Article  PubMed  Google Scholar 

  20. Janicak PG, Nahas Z, Lisanby SH, Solvason HB, Sampson SM, McDonald WM, Marangell LB, Rosenquist P, McCall WV, Kimball J, O’Reardon JP, Loo C, Husain MH, Krystal A, Gilmer W, Dowd SM, Demitrack MA, Schatzberg AF (2010) Durability of clinical benefit with transcranial magnetic stimulation (TMS) in the treatment of pharmacoresistant major depression: assessment of relapse during a 6-month, multisite, open-label study. Brain Stimul 3:187–199. doi:10.1016/j.brs.2010.07.003

    Article  PubMed  Google Scholar 

  21. Terraneo A, Leggio L, Saladini M, Ermani M, Bonci A, Gallimberti L (2015) Transcranial magnetic stimulation of dorsolateral prefrontal cortex reduces cocaine use: a pilot study. Eur Neuropsychopharmacol 26:37–44. doi:10.1016/j.euroneuro.2015.11.011

    Article  PubMed  CAS  Google Scholar 

  22. Ferenczi E, Deisseroth K (2016) Illuminating next-generation brain therapies. Nat Neurosci 19:414–416. doi:10.1038/nn.4232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen BT, Yau HJ, Hatch C, Kusumoto-Yoshida I, Cho SL, Hopf FW, Bonci A (2013) Rescuing cocaine-induced prefrontal cortex hypoactivity prevents compulsive cocaine seeking. Nature 496:359–362. doi:10.1038/nature12024

    Article  CAS  PubMed  Google Scholar 

  24. El-Shamayleh Y, Ni AM, Horwitz GD (2016) Strategies for targeting primate neural circuits with viral vectors. J Neurophysiol 116(1):122–134. doi:10.1152/jn.00087.2016

    Article  PubMed  PubMed Central  Google Scholar 

  25. Masamizu Y, Okada T, Kawasaki K, Ishibashi H, Yuasa S, Takeda S, Hasegawa I, Nakahara K (2011) Local and retrograde gene transfer into primate neuronal pathways via adeno-associated virus serotype 8 and 9. Neuroscience 193:249–258. doi:10.1016/j.neuroscience.2011.06.080

    Article  CAS  PubMed  Google Scholar 

  26. Han X, Qian X, Bernstein JG, Zhou H-H, Franzesi GT, Stern P, Bronson RT, Graybiel AM, Desimone R, Boyden ES (2009) Millisecond-timescale optical control of neural dynamics in the nonhuman primate brain. Neuron 62:191–198. doi:10.1016/j.neuron.2009.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Diester I, Kaufman MT, Mogri M, Pashaie R, Goo W, Yizhar O, Ramakrishnan C, Deisseroth K, Shenoy KV (2011) An optogenetic toolbox designed for primates. Nat Neurosci 14:387–397. doi:10.1038/nn.2749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Han X, Chow BY, Zhou H, Klapoetke NC, Chuong A, Rajimehr R, Yang A, Baratta MV, Winkle J, Desimone R, Boyden ES (2011) A high-light sensitivity optical neural silencer: development and application to optogenetic control of non-human primate cortex. Front Syst Neurosci 5:18. doi:10.3389/fnsys.2011.00018

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cavanaugh J, Monosov IE, McAlonan K, Berman R, Smith MK, Cao V, Wang KH, Boyden ES, Wurtz RH (2012) Optogenetic inactivation modifies monkey visuomotor behavior. Neuron 76:901–907. doi:10.1016/j.neuron.2012.10.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gerits A, Farivar R, Rosen BR, Wald LL, Boyden ES, Vanduffel W (2012) Optogenetically induced behavioral and functional network changes in primates. Curr Biol 22:1722–1726. doi:10.1016/j.cub.2012.07.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jazayeri M, Lindbloom-Brown Z, Horwitz GD (2012) Saccadic eye movements evoked by optogenetic activation of primate V1. Nat Neurosci 15:1368–1370. doi:10.1038/nn.3210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Inoue K-I, Takada M, Matsumoto M (2015) Neuronal and behavioural modulations by pathway-selective optogenetic stimulation of the primate oculomotor system. Nat Commun 6:8378. doi:10.1038/ncomms9378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Klein C, Evrard HC, Shapcott KA, Haverkamp S, Logothetis NK, Schmid MC (2016) Cell-targeted optogenetics and electrical microstimulation reveal the primate koniocellular projection to supra-granular visual cortex. Neuron 90:143–151. doi:10.1016/j.neuron.2016.02.036

    Article  CAS  PubMed  Google Scholar 

  34. Galvan A, Hu X, Smith Y, Wichmann T (2016) Effects of optogenetic activation of corticothalamic terminals in the motor thalamus of awake monkeys. J Neurosci 36:3519–3530. doi:10.1523/JNEUROSCI.4363-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yazdan-shahmorad A, Diaz-botia C, Hanson TL, Kharazia V, Ledochowitsch P, Maharbiz MM, Sabes PN, Yazdan-shahmorad A, Diaz-botia C, Hanson TL, Kharazia V, Ledochowitsch P (2016) A large-scale interface for optogenetic stimulation and recording in nonhuman primates neuroresource a large-scale interface for optogenetic stimulation and recording in nonhuman primates. Neuron 89:927–939. doi:10.1016/j.neuron.2016.01.013

    Article  CAS  PubMed  Google Scholar 

  36. Andersson M, Avaliani N, Svensson A, Wickham J, Pinborg LH, Jespersen B, Christiansen SH, Bengzon J, Woldbye DPD, Kokaia M (2016) Optogenetic control of human neurons in organotypic brain cultures. Sci Rep 6:24818. doi:10.1038/srep24818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Canli T (2015) Neurogenethics: an emerging discipline at the intersection of ethics, neuroscience, and genomics. Appl Transl Genomics 5:18–22. doi:10.1016/j.atg.2015.05.002

    Article  Google Scholar 

  38. Gilbert F, Harris AR, Kapsa RMI (2014) Controlling brain cells with light: ethical considerations for optogenetic clinical trials. AJOB Neurosci 5:3–11. doi:10.1080/21507740.2014.911213

    Article  Google Scholar 

  39. R Starkman (2012) Optogenetics: a novel technology with questions old and new. Huffington Post. http://www.huffingtonpost.com/ruth-starkman/optogenetics-a-new-techno_b_1700219.html (Accessed 17 May 2016)

  40. Ramirez S, Liu X, Lin P-A, Suh J, Pignatelli M, Redondo RL, Ryan TJ, Tonegawa S (2013) Creating a false memory in the hippocampus. Science 341:387–391. doi:10.1126/science.1239073

    Article  CAS  PubMed  Google Scholar 

  41. Lin D, Boyle MP, Dollar P, Lee H, Lein ES, Perona P, Anderson DJ (2011) Functional identification of an aggression locus in the mouse hypothalamus. Nature 470:221–226. doi:10.1038/nature09736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yu Q, Teixeira CM, Mahadevia D, Huang Y, Balsam D, Mann JJ, Gingrich JA, Ansorge MS (2014) Dopamine and serotonin signaling during two sensitive developmental periods differentially impact adult aggressive and affective behaviors in mice. Mol Psychiatry 19:688–698. doi:10.1038/mp.2014.10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Benn A, Barker GRI, Stuart SA, Roloff EVL, Teschemacher AG, Warburton EC, Robinson ESJ (2016) Optogenetic stimulation of prefrontal glutamatergic neurons enhances recognition memory. J Neurosci 36:4930–4939. doi:10.1523/JNEUROSCI.2933-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Berryessa CM, Cho MK (2013) Ethical, legal, social, and policy implications of behavioral genetics. Annu Rev Genomics Hum Genet 14:515–534. doi:10.1146/annurev-genom-090711-163743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jarvis S, Schultz SR (2015) Prospects for optogenetic augmentation of brain function. Front Syst Neurosci 9:157. doi:10.3389/fnsys.2015.00157

    Article  PubMed  PubMed Central  Google Scholar 

  46. Krook-Magnuson E, Armstrong C, Oijala M, Soltesz I (2013) On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy. Nat Commun 4:1376. doi:10.1038/ncomms2376

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Paz JT, Davidson TJ, Frechette ES, Delord B, Parada I, Peng K, Deisseroth K, Huguenard JR (2012) Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury. Nat Neurosci 16:64–70. doi:10.1038/nn.3269

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Wykes RC, Heeroma JH, Mantoan L, Zheng K, Macdonald DC, Deisseroth K, Hashemi KS, Walker MC, Schorge S, Kullmann DM (2012) Optogenetic and potassium channel gene therapy in a rodent model of focal neocortical epilepsy. Sci Transl Med 4:161ra152. doi:10.1126/scitranslmed.3004190

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Krook-Magnuson E, Armstrong C, Bui A, Lew S, Oijala M, Soltesz I (2015) In vivo evaluation of the dentate gate theory in epilepsy. J Physiol 593:2379–2388. doi:10.1113/JP270056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Krook-Magnuson E, Szabo GG, Armstrong C, Oijala M, Soltesz I (2014) Cerebellar directed optogenetic intervention inhibits spontaneous hippocampal seizures in a mouse model of temporal lobe epilepsy. Eneuro 1:ENEURO.0005–ENEURO.0014. doi:10.1523/ENEURO.0005-14.2014

    Article  Google Scholar 

  51. Kros L, Eelkman Rooda OHJ, Spanke JK, Alva P, van Dongen MN, Karapatis A, Tolner EA, Strydis C, Davey N, Winkelman BHJ, Negrello M, Serdijn WA, Steuber V, van den Maagdenberg AMJM, De Zeeuw CI, Hoebeek FE (2015) Cerebellar output controls generalized spike-and-wave discharge occurrence. Ann Neurol 77:1027–1049. doi:10.1002/ana.24399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Paz JT, Huguenard JR (2015) Microcircuits and their interactions in epilepsy: is the focus out of focus? Nat Neurosci 18:351–359. doi:10.1038/nn.3950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Soper C, Wicker E, Kulick CV, N’Gouemo P, Forcelli PA (2016) Optogenetic activation of superior colliculus neurons suppresses seizures originating in diverse brain networks. Neurobiol Dis 87:102–115. doi:10.1016/j.nbd.2015.12.012

    Article  PubMed  Google Scholar 

  54. Selvaraj P, Sleigh JW, Kirsch HE, Szeri AJ (2015) Optogenetic induced epileptiform activity in a model human cortex. Springerplus 4:155. doi:10.1186/s40064-015-0836-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Selvaraj P, Sleigh JW, Kirsch HE, Szeri AJ (2016) Closed-loop feedback control and bifurcation analysis of epileptiform activity via optogenetic stimulation in a mathematical model of human cortex. Phys Rev E 93:12416. doi:10.1103/PhysRevE.93.012416

    Article  CAS  Google Scholar 

  56. Bruegmann T, Malan D, Hesse M, Beiert T, Fuegemann CJ, Fleischmann BK, Sasse P (2010) Optogenetic control of heart muscle in vitro and in vivo. Nat Methods 7:897–900. doi:10.1038/nmeth.1512

    Article  CAS  PubMed  Google Scholar 

  57. Arrenberg AB, Stainier DYR, Baier H, Huisken J (2010) Optogenetic control of cardiac function. Science 330:971–974. doi:10.1126/science.1195929

    Article  CAS  PubMed  Google Scholar 

  58. Abilez OJ, Wong J, Prakash R, Deisseroth K, Zarins CK, Kuhl E (2011) Multiscale computational models for optogenetic control of cardiac function. Biophys J 101:1326–1334. doi:10.1016/j.bpj.2011.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhu YC, Uradu H, Majeed ZR, Cooper RL (2016) Optogenetic stimulation of drosophila heart rate at different temperatures and Ca2+ concentrations. Physiol Rep 4:e12695. doi:10.14814/phy2.12695

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Bingen BO, Engels MC, Schalij MJ, Jangsangthong W, Neshati Z, Feola I, Ypey DL, Askar SFA, Panfilov AV, Pijnappels DA, De Vries AAF (2014) Light-induced termination of spiral wave arrhythmias by optogenetic engineering of atrial cardiomyocytes. Cardiovasc Res 104:194–205. doi:10.1093/cvr/cvu179

    Article  CAS  PubMed  Google Scholar 

  61. Boyle PM, Karathanos TV, Trayanova NA (2015) “beauty is a light in the heart”: the transformative potential of optogenetics for clinical applications in cardiovascular medicine. Trends Cardiovasc Med 25:73–81. doi:10.1016/j.tcm.2014.10.004

    Article  PubMed  Google Scholar 

  62. Jia Z, Valiunas V, Lu Z, Bien H, Liu H, Wang H-Z, Rosati B, Brink PR, Cohen IS, Entcheva E (2011) Stimulating cardiac muscle by light: cardiac optogenetics by cell delivery. Circ Arrhythm Electrophysiol 4:753–760. doi:10.1161/CIRCEP.111.964247

    Article  PubMed  PubMed Central  Google Scholar 

  63. Beiert T, Bruegmann T, Sasse P (2014) Optogenetic activation of Gq signalling modulates pacemaker activity of cardiomyocytes. Cardiovasc Res 102:507–516. doi:10.1093/cvr/cvu046

    Article  CAS  PubMed  Google Scholar 

  64. Lüscher C, Pollak P (2016) Optogenetically inspired deep brain stimulation: linking basic with clinical research. Swiss Med Wkly 146:w14278. doi:10.4414/smw.2016.14278

    PubMed  Google Scholar 

  65. Udupa K, Chen R (2015) The mechanisms of action of deep brain stimulation and ideas for the future development. Prog Neurobiol 133:27–49. doi:10.1016/j.pneurobio.2015.08.001

    Article  PubMed  Google Scholar 

  66. Pascoli V, Terrier J, Espallergues J, Valjent E, O’Connor EC, Lüscher C (2014) Contrasting forms of cocaine-evoked plasticity control components of relapse. Nature 509:459–464. doi:10.1038/nature13257

    Article  CAS  PubMed  Google Scholar 

  67. Pascoli V, Turiault M, Lüscher C (2012) Reversal of cocaine-evoked synaptic potentiation resets drug-induced adaptive behaviour. Nature 481:71–75. doi:10.1038/nature10709

    Article  CAS  Google Scholar 

  68. Creed M, Pascoli VJ, Luscher C (2015) Refining deep brain stimulation to emulate optogenetic treatment of synaptic pathology. Science 347:659–664. doi:10.1126/science.1260776

    Article  CAS  PubMed  Google Scholar 

  69. Shen W, Flajolet M, Greengard P, Surmeier DJ (2008) Dichotomous dopaminergic control of striatal synaptic plasticity. Science 321:848–851. doi:10.1126/science.1160575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kravitz AV, Freeze BS, Parker PRL, Kay K, Thwin MT, Deisseroth K, Kreitzer AC (2010) Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466:622–626. doi:10.1038/nature09159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wrobel S (2015) Targeting depression with deep brain stimulation, Emory University, Atlanta, GA, Emory News Cent. http://news.emory.edu/stories/2015/04/hspub_brain_hacking_depression/campus.html (Accessed 21 May 2016)

  72. Dougherty DD, Rezai AR, Carpenter LL, Howland RH, Bhati MT, O’Reardon JP, Eskandar EN, Baltuch GH, Machado AD, Kondziolka D, Cusin C, Evans KC, Price LH, Jacobs K, Pandya M, Denko T, Tyrka AR, Brelje T, Deckersbach T, Kubu C, Malone DA (2015) A randomized sham-controlled trial of deep brain stimulation of the ventral capsule/ventral striatum for chronic treatment-resistant depression. Biol Psychiatry 78:240–248. doi:10.1016/j.biopsych.2014.11.023

    Article  PubMed  Google Scholar 

  73. Naesström M, Blomstedt P, Bodlund O (2016) A systematic review of psychiatric indications for deep brain stimulation, with focus on major depressive and obsessive-compulsive disorder. Nord J Psychiatry 70(7):483–491. doi:10.3109/08039488.2016.1162846

    Article  PubMed  Google Scholar 

  74. Lobo MK, Nestler EJ, Covington HE (2012) Potential utility of optogenetics in the study of depression. Biol Psychiatry 71:1068–1074. doi:10.1016/j.biopsych.2011.12.026

    Article  PubMed  PubMed Central  Google Scholar 

  75. Tye KM, Mirzabekov JJ, Warden MR, Ferenczi EA, Tsai H-C, Finkelstein J, Kim S-Y, Adhikari A, Thompson KR, Andalman AS, Gunaydin LA, Witten IB, Deisseroth K (2013) Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature 493:537–541. doi:10.1038/nature11740

    Article  CAS  PubMed  Google Scholar 

  76. Chaudhury D, Walsh JJ, Friedman AK, Juarez B, Ku SM, Koo JW, Ferguson D, Tsai H-C, Pomeranz L, Christoffel DJ, Nectow AR, Ekstrand M, Domingos A, Mazei-Robison MS, Mouzon E, Lobo MK, Neve RL, Friedman JM, Russo SJ, Deisseroth K, Nestler EJ, Han M-H (2013) Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature 493:532–536. doi:10.1038/nature11713

    Article  CAS  PubMed  Google Scholar 

  77. Milam AH, Li ZY, Fariss RN (1998) Histopathology of the human retina in retinitis pigmentosa. Prog Retin Eye Res 17:175–205. http://www.ncbi.nlm.nih.gov/pubmed/9695792 (Accessed 16 May 2016

    Article  CAS  PubMed  Google Scholar 

  78. Dalkara D, Duebel J, Sahel J-A (2015) Gene therapy for the eye focus on mutation-independent approaches. Curr Opin Neurol 28:51–60. doi:10.1097/WCO.0000000000000168

    Article  CAS  PubMed  Google Scholar 

  79. den Hollander AI, Roepman R, Koenekoop RK, Cremers FPM (2008) Leber congenital amaurosis: genes, proteins and disease mechanisms. Prog Retin Eye Res 27:391–419. doi:10.1016/j.preteyeres.2008.05.003

    Article  CAS  Google Scholar 

  80. Jacobson SG, Cideciyan AV, Roman AJ, Sumaroka A, Schwartz SB, Heon E, Hauswirth WW (2015) Improvement and decline in vision with gene therapy in childhood blindness. N Engl J Med 372:1920–1926. doi:10.1056/NEJMoa1412965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bainbridge JWB, Mehat MS, Sundaram V, Robbie SJ, Barker SE, Ripamonti C, Georgiadis A, Mowat FM, Beattie SG, Gardner PJ, Feathers KL, Luong VA, Yzer S, Balaggan K, Viswanathan A, de Ravel TJL, Casteels I, Holder GE, Tyler N, Fitzke FW, Weleber RG, Nardini M, Moore AT, Thompson DA, Petersen-Jones SM, Michaelides M, van den Born LI, Stockman A, Smith AJ, Rubin G, Ali RR et al (2015) N Engl J Med 372:1887–1897. doi:10.1056/NEJMoa1414221

    Article  PubMed  PubMed Central  Google Scholar 

  82. Edwards T, Jolly J, Groppe M, Barnard A, Cottrial C, Tolmachova T, Black G, Webster A, Lotery A, Holder G, Xue K, Downes S, Simunovic M, Seabra M, MacLaren R (2016) Visual acuity after retinal gene therapy for choroideremia. N Engl J Med 374(20):1996–1998. doi:10.1056/NEJMc1509501

    Article  PubMed  PubMed Central  Google Scholar 

  83. Bi A, Cui J, Ma Y-P, Olshevskaya E, Pu M, Dizhoor AM, Pan Z-H (2006) Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 50:23–33. doi:10.1016/j.neuron.2006.02.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lagali PS, Balya D, Awatramani GB, Münch TA, Kim DS, Busskamp V, Cepko CL, Roska B (2008) Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nat Neurosci 11:667–675. doi:10.1038/nn.2117

    Article  CAS  PubMed  Google Scholar 

  85. Yin L, Greenberg K, Hunter JJ, Dalkara D, Kolstad KD, Masella BD, Wolfe R, Visel M, Stone D, Libby RT, Diloreto D, Schaffer D, Flannery J, Williams DR, Merigan WH (2011) Intravitreal injection of AAV2 transduces macaque inner retina. Invest Ophthalmol Vis Sci 52:2775–2783. doi:10.1167/iovs.10-6250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cronin T, Vandenberghe LH, Hantz P, Juttner J, Reimann A, Kacsó A-E, Huckfeldt RM, Busskamp V, Kohler H, Lagali PS, Roska B, Bennett J (2014) Efficient transduction and optogenetic stimulation of retinal bipolar cells by a synthetic adeno-associated virus capsid and promoter. EMBO Mol Med 6:1175–1190. doi:10.15252/emmm.201404077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Macé E, Caplette R, Marre O, Sengupta A, Chaffiol A, Barbe P, Desrosiers M, Bamberg E, Sahel J-A, Picaud S, Duebel J, Dalkara D (2015) Targeting channelrhodopsin-2 to ON-bipolar cells with vitreally administered AAV restores ON and OFF visual responses in blind mice. Mol Ther 23:7–16. doi:10.1038/mt.2014.154

    Article  PubMed  CAS  Google Scholar 

  88. Duebel J, Marazova K, Sahel J-A (2015) Optogenetics. Curr Opin Ophthalmol 26:226–232. doi:10.1097/ICU.0000000000000140

    Article  PubMed  PubMed Central  Google Scholar 

  89. van Wyk M, Pielecka-Fortuna J, Löwel S, Kleinlogel S (2015) Restoring the ON switch in blind retinas: opto-mGluR6, a next-generation, cell-tailored optogenetic tool. PLoS Biol 13:e1002143. doi:10.1371/journal.pbio.1002143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Kleinlogel S, Terpitz U, Legrum B, Gökbuget D, Boyden ES, Bamann C, Wood PG, Bamberg E (2011) A gene-fusion strategy for stoichiometric and co-localized expression of light-gated membrane proteins. Nat Methods 8:1083–1088. doi:10.1038/nmeth.1766

    Article  CAS  PubMed  Google Scholar 

  91. Pan Z-H, Ganjawala TH, Lu Q, Ivanova E, Zhang Z (2014) ChR2 mutants at L132 and T159 with improved operational light sensitivity for vision restoration. PLoS One 9:e98924. doi:10.1371/journal.pone.0098924

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. K Bourzac (2016) In first human test of optogenetics, doctors aim to restore sight to the blind. MIT Technol. Rev. https://www.technologyreview.com/s/600696/in-first-human-test-of-optogenetics-doctors-aim-to-restore-sight-to-the-blind/ (Accessed 20 May 2016)

  93. Reardon S (2016) Light-controlled genes and neurons move into the clinic. Nature. doi:10.1038/nature.2016.19886

  94. RetroSense Therapeutics (2015) RST-001 Phase I/II Trial for Retinitis Pigmentosa–Full Text View–ClinicalTrials.gov, ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT02556736. (Accessed 5 Mar 2017)

  95. Jeschke M, Moser T (2015) Considering optogenetic stimulation for cochlear implants. Hear Res 322:224–234. doi:10.1016/j.heares.2015.01.005

    Article  PubMed  Google Scholar 

  96. Hernandez VH, Gehrt A, Reuter K, Jing Z, Jeschke M, Mendoza Schulz A, Hoch G, Bartels M, Vogt G, Garnham CW, Yawo H, Fukazawa Y, Augustine GJ, Bamberg E, Kügler S, Salditt T, de Hoz L, Strenzke N, Moser T (2014) Optogenetic stimulation of the auditory pathway. J Clin Invest 124:1114–1129. doi:10.1172/JCI69050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Brigande JV, Gubbels SP, Woessner DW, Jungwirth JJ, Bresee CS (2009) Electroporation-mediated gene transfer to the developing mouse inner ear. Methods Mol Biol 493:125–139. doi:10.1007/978-1-59745-523-7_8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Goßler C, Bierbrauer C, Moser R, Kunzer M, Holc K, Pletschen W, Köhler K, Wagner J, Schwaerzle M, Ruther P, Paul O, Neef J, Keppeler D, Hoch G, Moser T, Schwarz UT (2014) GaN-based micro-LED arrays on flexible substrates for optical cochlear implants. J Phys D Appl Phys 47:205401. doi:10.1088/0022-3727/47/20/205401

    Article  CAS  Google Scholar 

  99. Bryson JB, Machado CB, Lieberam I, Greensmith L (2016) Restoring motor function using optogenetics and neural engraftment. Curr Opin Biotechnol 40:75–81. doi:10.1016/j.copbio.2016.02.016

    Article  CAS  PubMed  Google Scholar 

  100. King CE, Wang PT, McCrimmon CM, Chou CC, Do AH, Nenadic Z (2015) The feasibility of a brain-computer interface functional electrical stimulation system for the restoration of overground walking after paraplegia. J Neuroeng Rehabil 12:80. doi:10.1186/s12984-015-0068-7

    Article  PubMed  PubMed Central  Google Scholar 

  101. Lin X, Lai B, Zeng X, Che M, Ling E, Wu W, Zeng Y-S (2016) Cell transplantation and neuroengineering approach for spinal cord injury treatment: a summary of current laboratory findings and review of literature. Cell Transplant 25(8):1425–1438. doi:10.3727/096368916X690836

    Article  PubMed  Google Scholar 

  102. Yousefifard M, Rahimi-Movaghar V, Nasirinezhad F, Baikpour M, Safari S, Saadat S, Jafari AM, Asady H, Razavi Tousi SM, Asady H, Tousi SMTR, Hosseini M, Hosseini M (2016) Neural stem/progenitor cell transplantation for spinal cord injury treatment; a systematic review and meta-analysis. Neuroscience 322:377–397. doi:10.1016/j.neuroscience.2016.02.034

    Article  CAS  PubMed  Google Scholar 

  103. Aravanis AM, Wang L-P, Zhang F, Meltzer LA, Mogri MZ, Schneider MB, Deisseroth K (2007) An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J Neural Eng 4:S143–S156. doi:10.1088/1741-2560/4/3/S02

    Article  PubMed  Google Scholar 

  104. Llewellyn ME, Thompson KR, Deisseroth K, Delp SL (2010) Orderly recruitment of motor units under optical control in vivo. Nat Med 16:1161–1165. doi:10.1038/nm.2228

    Article  CAS  PubMed  Google Scholar 

  105. Jin D, Liu Y, Sun F, Wang X, Liu X, He Z (2015) Restoration of skilled locomotion by sprouting corticospinal axons induced by co-deletion of PTEN and SOCS3. Nat Commun 6:8074. doi:10.1038/ncomms9074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bryson JB, Machado CB, Crossley M, Stevenson D, Bros-Facer V, Burrone J, Greensmith L, Lieberam I (2014) Optical control of muscle function by transplantation of stem cell-derived motor neurons in mice. Science 344:94–97. doi:10.1126/science.1248523

    Article  CAS  PubMed  Google Scholar 

  107. Roy DS, Arons A, Mitchell TI, Pignatelli M, Ryan TJ, Tonegawa S (2016) Memory retrieval by activating engram cells in mouse models of early Alzheimer’s disease. Nature 531:508–512. doi:10.1038/nature17172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. He X, Lu Y, Lin X, Jiang L, Tang Y, Tang G, Chen X, Zhang Z, Wang Y, Yang G-Y (2016) Optical inhibition of striatal neurons promotes focal neurogenesis and neurobehavioral recovery in mice after middle cerebral artery occlusion. J Cereb Blood Flow Metab 37(3):837–847. doi:10.1177/0271678X16642242

    Article  PubMed  Google Scholar 

  109. Kushibiki T, Okawa S, Hirasawa T, Ishihara M (2015) Optogenetic control of insulin secretion by pancreatic β-cells in vitro and in vivo. Gene Ther 22:553–559. doi:10.1038/gt.2015.23

    Article  CAS  PubMed  Google Scholar 

  110. Reinbothe TM, Safi F, Axelsson AS, Mollet IG, Rosengren AH (2014) Optogenetic control of insulin secretion in intact pancreatic islets with β-cell-specific expression of Channelrhodopsin-2. Islets 6:e28095. doi:10.4161/isl.28095

    Article  PubMed  PubMed Central  Google Scholar 

  111. Chernet BT, Adams DS, Lobikin M, Levin M (2016) Use of genetically encoded, light-gated ion translocators to control tumorigenesis. Oncotarget 7:19575–19588. doi:10.18632/oncotarget.8036

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Supported by the US National Institutes of Health grants NS94668 to I.S. and R25NS065741-04S1 to A.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Soltesz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Kim, H.K., Alexander, A.L., Soltesz, I. (2018). Optogenetics: Lighting a Path from the Laboratory to the Clinic. In: Stroh, A. (eds) Optogenetics: A Roadmap. Neuromethods, vol 133. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7417-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7417-7_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7415-3

  • Online ISBN: 978-1-4939-7417-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics