Advertisement

Preparation of Membrane Fractions (Envelope, Thylakoids, Grana, and Stroma Lamellae) from Arabidopsis Chloroplasts for Quantitative Proteomic Investigations and Other Studies

  • Lucas Moyet
  • Daniel Salvi
  • Martino Tomizioli
  • Daphné Seigneurin-Berny
  • Norbert RollandEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1696)

Abstract

Chloroplasts are semiautonomous organelles found in plants and protists. They are surrounded by a double membrane system, or envelope. These envelope membranes contain machineries to import nuclear-encoded proteins, and transporters for ions or metabolites, but are also essential for a range of plastid-specific metabolisms. The inner membrane surrounds a stroma, which is the site of the carbon chemistry of photosynthesis. Chloroplasts also contain an internal membrane system, or thylakoids, where the light phase of photosynthesis occurs. The thylakoid membranes themselves have a bipartite structure, consisting of grana stacks interconnected by stroma lamellae. These thylakoid membranes however form a continuous network that encloses a single lumenal space. Chloroplast-encoded or targeted proteins are thus addressed to various sub-compartments that turn out to be flexible systems and whose main functions can be modulated by alterations in the relative levels of their components. This article describes procedures developed to recover highly purified chloroplast membrane fractions (i.e., envelope, crude thylakoid membranes, as well as the two main thylakoid subdomains, grana and stroma lamellae), starting from Percoll-purified Arabidopsis chloroplasts. Immunological markers are also listed that can be used to assess the purity of these fractions and reveal specific contaminations by other plastid membrane compartments. The methods described here are compatible with chloroplast proteome dynamic studies relying on targeted quantitative proteomic investigations.

Key words

Chloroplast Chloroplast envelope Thylakoids Grana Stoma lamellae Cross-contamination Proteome 

References

  1. 1.
    Jarvis P, López-Juez E (2013) Biogenesis and homeostasis of chloroplasts and other plastids. Nat Rev Mol Cell Biol 14:787–802CrossRefPubMedGoogle Scholar
  2. 2.
    Nakai M (2015) The TIC complex uncovered: the alternative view on the molecular mechanism of protein translocation across the inner envelope membrane of chloroplasts. Biochim Biophys Acta 1847:957–967CrossRefPubMedGoogle Scholar
  3. 3.
    Linka N, Weber AP (2010) Intracellular metabolite transporters in plants. Mol Plant 3:21–53CrossRefPubMedGoogle Scholar
  4. 4.
    Rolland N, Curien G, Finazzi G, Kuntz M, Maréchal E, Matringe M, Ravanel S, Seigneurin-Berny D (2012) The biosynthetic capacities of the plastids and integration between cytoplasmic and chloroplast processes. Annu Rev Genet 46:233–264CrossRefPubMedGoogle Scholar
  5. 5.
    Block MA, Douce R, Joyard J, Rolland N (2007) Chloroplast envelope membranes: a dynamic interface between plastids and the cytosol. Photosynth Res 92:225–244CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Joyard J, Ferro M, Masselon C, Seigneurin-Berny D, Salvi D, Garin J, Rolland N (2009) Chloroplast proteomics and the compartmentation of plastidial isoprenoid biosynthetic pathways. Mol Plant 2:1154–1180CrossRefPubMedGoogle Scholar
  7. 7.
    Joyard J, Ferro M, Masselon C, Seigneurin-Berny D, Salvi D, Garin J, Rolland N (2010) Chloroplast proteomics highlights the subcellular compartmentation of lipid metabolism. Prog Lipid Res 49:128–158CrossRefPubMedGoogle Scholar
  8. 8.
    Pribil M, Labs M, Leister D (2014) Structure and dynamics of thylakoids in land plants. J Exp Bot 65:1965–1972CrossRefGoogle Scholar
  9. 9.
    Tomizioli M, Lazar C, Brugière S, Burger T, Salvi D, Gatto L, Moyet L, Breckels LM, Hesse AM, Lilley KS, Seigneurin-Berny D, Finazzi G, Rolland N, Ferro M (2014) Deciphering thylakoid sub-compartments using a mass spectrometry-based approach. Mol Cell Proteomics 13:2147–2167CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Agrawal GK, Bourguignon J, Rolland N, Ephritikhine G, Ferro M, Jaquinod M, Alexiou KG, Chardot T, Chakraborty N, Jolivet P, Doonan JH, Rakwal R (2011) Plant organelle proteomics: collaborating for optimal cell function. Mass Spectrom Rev 30:772–853PubMedGoogle Scholar
  11. 11.
    Joshi HJ, Hirsch-Hoffmann M, Baerenfaller K, Gruissem W, Baginsky S, Schmidt R, Schulze WX, Sun Q, van Wijk KJ, Egelhofer V, Wienkoop S, Weckwerth W, Bruley C, Rolland N, Toyoda T, Nakagami H, Jones AM, Briggs SP, Castleden I, Tanz SK, Millar AH, Heazlewood JL (2011) MASCP Gator: an aggregation portal for the visualization of Arabidopsis proteomics data. Plant Physiol 155:259–270CrossRefPubMedGoogle Scholar
  12. 12.
    Ferro M, Brugière S, Salvi D, Seigneurin-Berny D, Court M, Moyet L, Ramus C, Miras S, Mellal M, Le Gall S, Kieffer-Jaquinod S, Bruley C, Garin J, Joyard J, Masselon C, Rolland N (2010) AT_CHLORO, a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins. Mol Cell Proteomics 9:1063–1084CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Bruley C, Dupierris V, Salvi D, Rolland N, Ferro M (2012) AT_CHLORO: a chloroplast protein database dedicated to sub-plastidial localization. Front Plant Sci 3:205CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Porra RJ, Thomson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted wth four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394CrossRefGoogle Scholar
  15. 15.
    Seigneurin-Berny D, Gravot A, Auroy P, Mazard C, Kraut A, Finazzi G, Grunwald D, Rappaport F, Vavasseur A, Joyard J, Richaud P, Rolland N (2006) HMA1, a new Cu-ATPase of the chloroplast envelope, is essential for growth under adverse light conditions. J Biol Chem 281:2882–2892CrossRefPubMedGoogle Scholar
  16. 16.
    Miras S, Salvi D, Piette L, Seigneurin-Berny D, Grunwald D, Garin J, Reinbothe C, Joyard J, Reinbothe S, Rolland N (2007) Toc159- and Toc75-independent import of a transit sequence-less precursor into the inner envelope of chloroplasts. J Biol Chem 282:29482–29492CrossRefPubMedGoogle Scholar
  17. 17.
    Vallon O, Bulte L, Dainese P, Olive J, Bassi R, Wollman FA (1991) Lateral redistribution of cytochrome b6/f complexes along thylakoid membranes upon state transitions. Proc Natl Acad Sci U S A 88:8262–8266CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Salvi D, Moyet L, Seigneurin-Berny D, Ferro M, Joyard J, Rolland N (2011) Preparation of envelope membrane fractions from Arabidopsis chloroplasts for proteomic analysis and other studies. Methods Mol Biol 775:189–206CrossRefPubMedGoogle Scholar
  19. 19.
    Douce R, Joyard J (1982) Purification of the chloroplast envelope. In: Edelman M, Hallick R, Chua NH (eds) Methods in chloroplast molecular biology. Elsevier/North-Holland, Amsterdam, pp 139–256Google Scholar
  20. 20.
    Ferro M, Salvi D, Brugière S, Miras S, Kowalski S, Louwagie M, Garin J, Joyard J, Rolland N (2003) Proteomics of the chloroplast envelope membranes from Arabidopsis thaliana. Mol Cell Proteomics 2:325–345CrossRefPubMedGoogle Scholar
  21. 21.
    Seigneurin-Berny D, Salvi D, Dorne A-J, Joyard J, Rolland N (2008) Percoll-purified and photosynthetically active chloroplasts from Arabidopsis thaliana leaves. Plant Physiol Biochem 46:951–955CrossRefPubMedGoogle Scholar
  22. 22.
    Carrie C, Giraud E, Whelan J (2009) Protein transport in organelles: dual targeting of proteins to mitochondria and chloroplasts. FEBS J 276:1187–1195CrossRefPubMedGoogle Scholar
  23. 23.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  24. 24.
    Ferro M, Seigneurin-Berny D, Rolland N, Chapel A, Salvi D, Garin J, Joyard J (2000) Organic solvent extraction as a versatile procedure to identify hydrophobic chloroplast membrane proteins. Electrophoresis 21:3517–3526CrossRefPubMedGoogle Scholar
  25. 25.
    Santoni V, Molloy M, Rabilloud T (2000) Membrane proteins and proteomics: un amour impossible? Electrophoresis 21:1054–1070CrossRefPubMedGoogle Scholar
  26. 26.
    Chua NH (1980) Electrophoretic analysis of chloroplast proteins. Methods Enzymol 69:434–436CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Lucas Moyet
    • 1
  • Daniel Salvi
    • 1
  • Martino Tomizioli
    • 1
  • Daphné Seigneurin-Berny
    • 1
  • Norbert Rolland
    • 1
    Email author
  1. 1.Laboratoire de Physiologie Cellulaire & Végétale, BIG, CNRS, Univ. Grenoble Alpes, CEA, INRAGrenoble cedex 9France

Personalised recommendations