Skip to main content

Proteomic Analysis of Rice Golgi Membranes Isolated by Floating Through Discontinuous Sucrose Density Gradient

Part of the Methods in Molecular Biology book series (MIMB,volume 1696)

Abstract

The Golgi apparatus is an endomembrane system organelle and has roles in glycosylation, sorting, and secretion of proteins in the secretory pathway. It has a central function in living organism and is also essential for plant growth. Proteomic approaches to identify the Golgi membrane proteins have been performed in cell suspension cultures and many Golgi membrane-associated proteins were found, whereas it has well established in rice seedling yet. In this chapter, our recent improving published methods for isolated rice Golgi membranes by floating through a discontinuous sucrose density gradient are provided in detail with proteomic analyses.

Key words

  • Golgi membranes
  • Oryza sativa
  • Proteomic analysis
  • Floating
  • Sucrose density gradient

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-7411-5_6
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-7411-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hawes C, Satiat-Jeunemaitre B (1996) Stacks of questions: how does the plant Golgi work? Trends Plant Sci 1:395–401

    CrossRef  Google Scholar 

  2. Asatsuma S, Sawada C, Itoh K et al (2005) Involvement of α-amylase I-1 in starch degradation in rice chloroplasts. Plant Cell Physiol 46:858–869

    CAS  CrossRef  PubMed  Google Scholar 

  3. Villarejo A, Buren S, Larsson S et al (2005) Evidence for a protein transported through the secretory pathway en route to the higher plant chloroplast. Nat Cell Biol 7:1224–1231

    CrossRef  PubMed  Google Scholar 

  4. Nanjo Y, Oka H, Ikarashi N et al (2006) Rice plastidial N-glycosylated nucleotide pyrophosphatase/phosphodiesterase is transported from the ER-Golgi to the chloroplast through the secretory pathway. Plant Cell 18:2582–2592

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  5. Kitajima A, Asatsuma S, Okada H et al (2009) The rice α-amylase glycoprotein is targeted from the Golgi apparatus through the secretory pathway to the plastids. Plant Cell 21:2844–2858

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  6. Burén S, Ortega-Villasante C, Blanco-Rivero A et al (2011) Importance of post-translational modifications for functionality of a chloroplast-localized carbonic anhydrase (CAH1) in Arabidopsis thaliana. PLoS One 6:1–15

    CrossRef  Google Scholar 

  7. Shiraya T, Mori T, Mruyama T et al (2015) Golgi/plastid-type manganese superoxide dismutase involved in heat-stress tolerance during grain filling of rice. Plant Biotechnol J 13:1251–1263

    CAS  CrossRef  PubMed  Google Scholar 

  8. Taylor RS, Wu CC, Hays LG et al (2000) Proteomics of rat liver Golgi complex: minor proteins are identified through sequential fractionation. Electrophoresis 21:3441–3459

    CAS  CrossRef  PubMed  Google Scholar 

  9. Dunkley TP, Hester S, Shadforth IP et al (2006) Mapping the Arabidopsis organelle proteome. Proc Natl Acad Sci U S A 103:6518–6523

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  10. Mikami S, Hori H, Mitsui T (2001) Separation of distinct compartments of rice Golgi complex by sucrose density gradient centrifugation. Plant Sci 161:665–675

    CAS  CrossRef  Google Scholar 

  11. Asakura T, Hirose S, Katamine H et al (2006) Isolation and proteomic analysis of rice Golgi membranes: cis-Golgi membranes labeled with GFP-SYP31. Plant Biotechnol 23:475–485

    CAS  CrossRef  Google Scholar 

  12. Kimura S, Mitsui T, Matsuoka T, Igaue I (1992) Purification, characterization and localization of rice UDP-glucose pyrophosphorylase. Plant Physiol Biochem 30:683–693

    CAS  Google Scholar 

  13. Kaneko K, Inomata T, Masui T et al (2014) Nucleotide pyrophosphatase/phosphodiesterase 1 exerts a negative effect on starch accumulation and growth in rice seedlings under high temperature and CO2 concentration conditions. Plant Cell Physiol 55:320–332

    CAS  CrossRef  PubMed  Google Scholar 

  14. Nishimura M, Akazawa T (1974) Studies on spinach ribulosebisphosphate carboxylase. Carboxylase and oxygenase reaction examined by immunochemical methods. Biochemistry 13:2277–2281

    CAS  CrossRef  PubMed  Google Scholar 

  15. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    CAS  CrossRef  PubMed  Google Scholar 

  16. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  17. Griffin NM, Yu J, Long F et al (2010) Label-free, normalized quantification of complex mass spectrometry data for proteomic analysis. Nat Biotechnol 28:83–49

    CAS  CrossRef  PubMed  Google Scholar 

  18. Mi H, Muruganujan A, Casagrande JT, Thomas PD (2013) Large-scale gene function analysis with the PANTHER classification system. Nat Protoc 8:1551–1566

    CrossRef  PubMed  Google Scholar 

  19. Masuda T, Tomita M, Ishihama Y (2008) Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J Proteome Res 7:731–740

    CAS  CrossRef  PubMed  Google Scholar 

  20. Crestfield AM, Moore S, Stein WH (1963) The preparation and enzymatic hydrolysis of reduced and S-carboxymethylated proteins. J Biol Chem 238:622–627

    CAS  PubMed  Google Scholar 

  21. Yeung Y-G, Stanley ER (2010) Rapid detergent removal from peptide samples with ethyl acetate for mass spectrometry analysis. Curr Protoc Protein Sci, Chapter 16:Unit 16.12

    Google Scholar 

Download references

Acknowledgment

This research was supported by Grants-in-Aid for Scientific Research (A) (15H02486) and Grant for Promotion of KAAB Projects (Niigata University) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiaki Mitsui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Oikawa, K. et al. (2018). Proteomic Analysis of Rice Golgi Membranes Isolated by Floating Through Discontinuous Sucrose Density Gradient. In: Mock, HP., Matros, A., Witzel, K. (eds) Plant Membrane Proteomics. Methods in Molecular Biology, vol 1696. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7411-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7411-5_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7409-2

  • Online ISBN: 978-1-4939-7411-5

  • eBook Packages: Springer Protocols