Skip to main content

Design of Anti-Alzheimer’s Disease Agents Focusing on a Specific Interaction with Target Biomolecules

  • Protocol
  • First Online:
Computational Modeling of Drugs Against Alzheimer’s Disease

Part of the book series: Neuromethods ((NM,volume 132))

Abstract

Alzheimer’s disease (AD) is the most common cause of dementia, characterized by progressive intellectual deterioration. Amyloid β peptide (Aβ), the main component of senile plaques in the brains of patients with AD, is formed from amyloid precursor protein (APP) by two processing enzymes. According to the amyloid hypothesis, a processing enzyme β-secretase (BACE1; β-site APP cleaving enzyme) that triggers Aβ formation in the rate-limiting first step of Aβ processing appears to be a promising molecular target for therapeutic intervention in AD. Many researchers have revealed BACE1 inhibitors for the AD treatment. Early BACE1 inhibitors were designed based on the first reported X-ray crystal structure, 1FKN, of a complex between recombinant BACE1 and inhibitor OM99-2. Although OM99-2 seemed to interact with BACE1-Arg235 side chain by hydrogen bonding, we found that a quantum chemical interaction, such as σ-π interaction or π-π stacking, plays a critical role in BACE1 inhibition mechanism. Moreover, we proposed a novel “electron-donor bioisostere” concept in drug discovery study and designed potent BACE1 inhibitors using this concept.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Selkoe DJ (2000) Toward a comprehensive theory for Alzheimer’s disease. Hypothesis: Alzheimer’s disease is caused by the cerebral accumulation and cytotoxicity of amyloid β-protein. Ann N Y Acad Sci 924:17–25

    Article  CAS  PubMed  Google Scholar 

  2. Selkoe DJ (1989) The deposition of amyloid proteins in the aging mammalian brain: implications for Alzheimer’s disease. Ann Med 21:73–76

    Article  CAS  PubMed  Google Scholar 

  3. Selkoe DJ (1999) Translating cell biology into therapeutic advances in Alzheimer’s disease. Nature 399:A23–A31

    Article  CAS  PubMed  Google Scholar 

  4. Sinha S, Lieberburg I (1999) Cellular mechanisms of β-amyloid production and secretion. Proc Natl Acad Sci U S A 96:11049–11053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vassar R, Bennett BD, Babu-Khan S et al (1999) β-Secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286:735–741

    Article  CAS  PubMed  Google Scholar 

  6. Hussain I, Powell D, Howlett DR et al (1999) Identification of a novel aspartic protease (asp 2) as β-Secretase. Neuroscience 14:419–427

    CAS  Google Scholar 

  7. Yan R, Bienkowski MJ, Shuck ME et al (1999) Membrane-anchored aspartyl protease with Alzheimer’s disease β-secretase activity. Nature 402:533–537

    Article  CAS  PubMed  Google Scholar 

  8. Sinha S, Anderson JP, Barbour R et al (1999) Purification and cloning of amyloid precursor protein β-secretase from human brain. Nature 402:537–540

    Article  CAS  PubMed  Google Scholar 

  9. Turner PR, O’Connor K, Tate WP, Abraham WC (2003) Roles of amyloid precursor protein and its fragment in regulating neural activity, plasticity and memory. Prog Neurobiol 70:1–32

    Article  CAS  PubMed  Google Scholar 

  10. Fluhrer R, Capell A, Westmeyer G et al (2002) A non-amyloidogenic function of BACE-2 in the secretory pathway. J Neurochem 81:1011–1020

    Article  CAS  PubMed  Google Scholar 

  11. Roberds SL, Anderson J, Basi G et al (2001) BACE knockout mice are healthy despite lacking the primary β-secretase activity in brain: implications for Alzheimer's disease therapeutics. Hum Mol Genet 10:1317–1324

    Article  CAS  PubMed  Google Scholar 

  12. Hamada Y, Kiso Y (2016) New directions for protease inhibitors directed drug discovery. Biopolymers 106:563–579

    Article  CAS  PubMed  Google Scholar 

  13. Hamada Y, Kiso Y (2015) Aspartic protease inhibitors as drug candidates for treating various difficult-to-treat diseases. Amino Acids, Peptides and Proteins 39. Royal Society of Chemistry, London:114–147

    Google Scholar 

  14. Hamada Y (2014) Drug discovery of β-secretase inhibitors based on quantum chemical interactions for the treatment of Alzheimer’s disease. SOJ Pharmacy & Pharmaceutical Sci 1(3):1–8

    Google Scholar 

  15. Hamada Y, Kiso Y (2009) Recent progress in the drug discovery of non-peptidic BACE1 inhibitors. Expert Opin Drug Discov 4:391–416

    Article  CAS  PubMed  Google Scholar 

  16. Hamada Y, Kiso Y (2012) The application of bioisosteres in drug design for novel drug discovery: focusing on acid protease inhibitors. Expert Opin Drug Discov 7:903–922

    Article  CAS  PubMed  Google Scholar 

  17. Hamada Y, Kiso Y (2013) Advances in the identification of β-secretase inhibitors. Expert Opin Drug Discov 8:709–731

    Article  CAS  PubMed  Google Scholar 

  18. Nguyen J-T, Hamada Y, Kimura T, Kiso Y (2008) Design of potent aspartic protease inhibitors to treat various diseases. Arch Pharm Chem Life Sci 341:523–535

    Article  CAS  Google Scholar 

  19. Ghosh AK, Shin D, Downs D et al (2000) Design of potent inhibitors for human brain memapsin 2 (β-secretase). J Am Chem Soc 122:3522–3523

    Article  CAS  Google Scholar 

  20. Hong L, Koelsch G, Lin X et al (2000) Structure of the protease domain of memapsin 2 (β-secretase) complexed with inhibitor. Science 290:150–153

    Article  CAS  PubMed  Google Scholar 

  21. Ghosh AK, Bilcer G, Harwood C et al (2001) Structure-based design: potent inhibitors of human brain memapsin 2 (β-secretase). J Med Chem 44:2865–2868

    Article  CAS  PubMed  Google Scholar 

  22. Hong L, Turner RT, Koelsch G, Shin D, Ghosh AK, Tang J (2002) Crystal structure of memapsin 2 (β-secretase) in complex with an inhibitor OM00–3. Biochemistry 41:10963–10967

    Article  CAS  PubMed  Google Scholar 

  23. Kimura T, Shuto D, Hamada Y et al (2005) Design and synthesis of highly active Alzheimer’s β-secretase (BACE1) inhibitors, KMI-420 and KMI-429, with enhanced chemical stability. Bioorg Med Chem Lett 15:211–215

    Article  CAS  PubMed  Google Scholar 

  24. Asai M, Hattori C, Iwata N et al (2006) The novel β-secretase inhibitor KMI-429 reduces amyloid beta peptide production in amyloid precursor protein transgenic and wild-type mice. J Neurochem 96:533–540

    Article  CAS  PubMed  Google Scholar 

  25. Kimura T, Hamada Y, Stochaj M et al (2006) Design and synthesis of potent β-secretase (BACE1) inhibitors with P1’ carboxylic acid bioisostere. Bioorg Med Chem Lett 16:2380–2386

    Article  CAS  PubMed  Google Scholar 

  26. Hamada Y, Igawa N, Ikari H et al (2006) β-Secretase inhibitors: modification at the P4 position and improvement of inhibitory activity in cultured cells. Bioorg Med Chem Lett 16:4354–4359

    Article  CAS  PubMed  Google Scholar 

  27. Hamada Y, Abdel-Rahman H, Yamani A et al (2008) BACE1 inhibitors: optimization by replacing the P1’ residue with non-acidic moiety. Bioorg Med Chem Lett 18:1649–1653

    Article  CAS  PubMed  Google Scholar 

  28. Tagad HD, Hamada Y, Nguyen J-T et al (2010) Design of pentapeptidic BACE1 inhibitors with carboxylic acid bioisosteres at P1’ and P4 positions. Bioorg Med Chem 18:3175–3186

    Article  CAS  PubMed  Google Scholar 

  29. Tagad HD, Hamada Y, Nguyen J-T et al (2011) Structure-guided design and synthesis of P1’ position 1-phenylcycloalkylamine-derived pentapeptidic BACE1 inhibitors. Bioorg Med Chem 19:5238–5246

    Article  CAS  PubMed  Google Scholar 

  30. Hamada Y, Ohta H, Miyamoto N et al (2009) Significance of interaction of BACE1-Arg235 with its ligands and design of BACE1 inhibitors with P2 pyridine scaffold. Bioorg Med Chem Lett 19:2435–2439

    Article  CAS  PubMed  Google Scholar 

  31. Crowley PB, Golovin A (2005) Cation-π interactions in protein-protein interfaces. Proteins 59:231–239

    Article  CAS  PubMed  Google Scholar 

  32. Persson BD, Müller S, Reiter DM (2009) An arginine switch in the species B adenovirus knob determines high-affinity engagement of cellular receptor CD46. J Virology 83:673–686

    Article  CAS  PubMed  Google Scholar 

  33. Long SB, Long MB, White RR (2008) Crystal structure of an RNA aptamer bound to thrombin. RNA 14:2504–2512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hamada Y, Ohta H, Miyamoto N et al (2008) Novel non-peptidic and small-sized BACE1 inhibitors. Bioorg Med Chem Lett 18:1654–1658

    Article  CAS  Google Scholar 

  35. Hamada Y, Nakanishi T, Suzuki K et al (2012) Novel BACE1 inhibitors possessing a 5-nitroisophthalic scaffold at the P2 position. Bioorg Med Chem Lett 22:4640–4644

    Article  CAS  PubMed  Google Scholar 

  36. Suzuki K, Hamada Y, Nguyen J-T et al (2013) Novel BACE1 inhibitors with a non-acidic heterocycle at the P1′ position. Bioorg Med Chem 21:6665–6673

    Article  CAS  PubMed  Google Scholar 

  37. Hamada Y, Suzuki K, Nakanishi T et al (2014) Structure-activity relationship study of BACE1 inhibitors possessing a chelidonic or 2,6-pyridinedicarboxylic scaffold at the P2 position. Bioorg Med Chem Lett 24:618–623

    Article  CAS  PubMed  Google Scholar 

  38. Hamada Y, Tagad HD, Nishimura Y et al (2014) Tripeptidic BACE1 inhibitors devised by in-silico conformational structure-based design. Bioorg Med Chem Lett 22:1130–1135

    Article  Google Scholar 

  39. Imai YN, Inoue Y, Nakanishi I, Kitaura K (2008) Cl–π interactions in protein–ligand complexes. Protein Sci 17:1129–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Grüninger-Leitch F, Schlatter D, Küng E, Nelböck P, Döbeli H (2002) Substrate and inhibitor profile of BACE (β-Secretase) and comparison with other mammalian aspartic proteases. J Biol Chem 277:4687–4693

    Article  PubMed  Google Scholar 

  41. Hamada Y, Ishiura S, Kiso Y (2013) BACE1 inhibitor peptides: can an infinitely small k cat value turn the substrate of an enzyme into its inhibitor? ACS Med Chem Lett 3:193–197

    Article  Google Scholar 

Download references

Acknowledgment

The study was supported in part by the Grants-in-Aid for Scientific Research from MEXT (Ministry of Education, Culture, Sports, Science and Technology), Japan (KAKENHI No. 23590137 and No. 26460163), and the donation from Professor Emeritus Tetsuro Fujita of Kyoto University. At the time writing, we received word that Prof. Fujita had passed away on January 1, 2017. Prof. Fujita was the teacher of one of the authors, Y. Hamada, and was known as the inventor of a treatment agent for multiple sclerosis. We dedicate this article to Prof. Fujita.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshio Hamada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Hamada, Y., Usui, K. (2018). Design of Anti-Alzheimer’s Disease Agents Focusing on a Specific Interaction with Target Biomolecules. In: Roy, K. (eds) Computational Modeling of Drugs Against Alzheimer’s Disease. Neuromethods, vol 132. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7404-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7404-7_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7403-0

  • Online ISBN: 978-1-4939-7404-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics